
MAE 104 - SUMMER 2015
HOMEWORK 1 SOLUTION

Problem 1:

1. Plot the drag coefficient, cD, the aerodynamic efficiency, AE, and the center of pres-
sure, xcp, of the airplane as a function of the angle of attack.

By combining together the plots for the polar curve and the cL as a function of α, we
obtain the cD data. The result is shown in Figure 1.

Figure 1: Drag coefficient of the airplane as a function of the angle of attack.

The aerodynamic efficiency is defined as AE = cL/cD. By combining the cL and cD
plots we get AE as a function of α, represented in Figure 2.

Consider the sketch presented in Figure 3 for the geometry of the problem. The origin
of the (x, y) axis is located at the front of the airplane.

Applying the definition of center of pressure:

Mcp = N ·
(
xcp − xc/4

)
+Mc/4 = 0.
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Figure 2: Aerodynamic efficiency of the airplane as a function of the angle of attack.

By using the definition of the aerodynamic coefficients, defining the average chord
length as c = S/b, and using the relation

cN = cL · cos(α) + cD · sin(α),

we find that the location of the center of pressure is

xcp = 0.6 · d− S

b
·
cMc/4

cN
,

Figure 4 represents the location of the center of pressure as a function of the angle of
attack.
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Figure 3: Sketch for the geometry of the problem.
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Figure 4: Center of pressure as a function of the angle of attack.

2. Calculate the stalling velocity of the airplane. What are α, cD, cMc/4
and AE at this

flight condition?

cL,max ≈ 1.8⇒ Vstall =

√
2W

ρScL,max
≈ 74.2 m/s,

αstall ≈ 38◦, ∗∗

cD,stall ≈ 1.2,

cMc/4,stall ≈ 0.09,

AEstall ≈ 1.5.

** The angle of attack αstall is very large. Since the engines are fixed to the airplane,
the thrust at high angles of attack have a non-zero component parallel to the lift. Now
that we know that α is large, we need to take into account this component of the thrust
in order to calculate the actual Vstall. However, this is out of the scope of this problem,
and for simplicity, here on I will use the approximation of small α (all the text in blue),
and I will consider it as good in my grading. If you are interested in knowing the actual
solution, keep reading. Consider the force balance plotted in Figure 5. Equilibrium of
forces renders

W= L+ T · sin(α),

D= T · cos(α),
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Figure 5: Force balance for high angles of attack.

and thus:

1

2
ρV 2S · [cL + cD tan(α)] = W,

Vstall =

√
2W

ρS [cL + cD · tan(α)]max

The stall doesn’t happen now at the maximum cL but at the maximum cL+cD ·tan(α),
which is the coefficient of total force counteracting the airplane’s weight. Figure 6
depicts the dependence of cL + cD · tan(α) with α. It can be seen that this coefficient
of force doesn’t reach a maximum for the range of angles of attack provided. This
means that the airplane can reach very high angles of attack and thus very low speeds
without stalling. Potentially, if the curve doesn’t reach a maximum, in a flight with
lower weight, the airplane could stay vertically with zero speed and balancing the

Figure 6: Coefficient of total force counteracting the airplane’s weight.
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Figure 7: Airplane flying at α =
π

2
rad.

weight with just the thrust provided by the engines. And just to finish, Figure 7 shows
a cool picture of a MIG-29 performing the cobra maneuver in which it stays vertical,
with zero velocity, and balanced just by the engines’ thrust

3. Under the conditions described in the previous part, calculate the lift, drag, moment
with respect to the front of the airplane M0 and traction acting on the airplane.

Lstall = W = 230, 535 N,

Dstall =
1

2
ρV 2

stallScD,stall ≈ 151, 700 N,

M0,stall = −N · 0.6 · d+Mc/4 =
1

2
ρV 2

stallSc

[
−0.6

d

c
(cL,max cos(α) + cD,stall sin(α)) + cMc/4

]
M0,stall ≈ −2, 788, 496 N ·m,

Tstall = Dstall ≈ 151, 700 N.

4. Calculate the maximum velocity of the airplane. What are α, cL, cMc/4
and AE at this

flight condition?
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The airplane has two engines, and thus the maximum thrust is Tmax = 2T .

cD,min ≈ 0.05⇒ Vmax =

√
2Tmax
ρScD,min

≈ 360.6 m/s,

αcD,min
≈ 5◦,

cL,cD,min
≈ 0.14,

cMc/4,cD,min
≈ 0.17,

AEcD,min
≈ 2.6.

5. Under the conditions described in the previous part, calculate the lift, drag, moment
with respect to the front of the airplane and traction acting on the airplane.

LcD.min
=

1

2
ρV 2

maxScL,cD,min
= 413, 596 N 6= W,

DcD,min
= Tmax = 158, 400 N,

M0,cD,max
= −N · 0.6 · d+Mc/4 =

1

2
ρV 2

maxSc

[
−0.6

d

c

(
cL,cD,min

cos(α) + cD,min sin(α)
)

+ cMc/4

]
M0,cD,min

≈ −2, 754, 348 N ·m,

TcD,min
= Tmax = 158, 400 N.

6. What is the angle of attack that maximizes AE? Calculate the lift to drag ratio,
velocity, lift L, drag D, moment with respect to the front of the airplaneM0 and
thrust T for that angle of attack.

αAEmax ≈ 10◦,

AEmax ≈ 6.3,

VAEmax =

√
2W

ρScL,AEmax

≈ 137.4 m/s,

LAEmax = W = 230, 535 N,

DAEmax =
W

AEmax
≈ 36, 332 N,

M0,AEmax = −N · 0.6 · d+Mc/4 = −0.6 · d · (LAEmax cos(α) +DAEmax sin(α)) +
1

2
ρV 2

AEmax
SccMc/4

M0,AEmax ≈ −2, 174, 243 N ·m,

TAEmax = DAEmax ≈ 36, 332 N.
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7. When the airplane is at a height h = 4, 000m. both engines are turned off (T = 0N.)
and the airplane is glided to the ground. Calculate the maximum distance that the
airplane is able to glide at maximum lift to drag ratio.

If x is the traveled distance:

AE =
x

h
=

1

tan(α)
⇒ xAEmax = AEmax · h ≈ 25, 381 m.

8. Specify the units of all the previous results.

All the results in the previous questions have the correct units.

Bonus: Is there anything wrong with questions 4. and 5.?

The velocity is supersonic, and thus the theory used doesn’t hold.
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Problem 2:

1. What is the relation between the lift L′ and normal force N ′ on the airfoil? Justify
why we can integrate along the reference system (x2, y2) instead of (x, y) to calculate
L′.

The integral of cp on the surface of the airfoil, projected on (x2, y2) will render the
normal and axial forces. However, we are interested in the lift force

L′ = N ′ · cos(α)− A′ · sin(α)

Given that α is very small:

L′ ≈ N ′.

2. Integrate cp along the surface of the airfoil to calculate L′. Hint: use the coordinate
system (x2, y2).

cl ≈ cn =
1

c
·

−
x2=c/2∫

x2=−c/2

cp,u(x2)dx2 +

x2=c/2∫
x2=−c/2

cp,l(x2)dx2

 =

1

c
·

x2=c/2∫
x2=−c/2

{
2α

√
1− 2x2/c

1 + 2x2/c
+ α21− 2x2/c

1 + 2x2/c
+ 2α

√
1− 2x2/c

1 + 2x2/c
− α21− 2x2/c

1 + 2x2/c

}
dx2 =

1

c
·

x2=c/2∫
x2=−c/2

4α

√
1− 2x2/c

1 + 2x2/c
dx2

Making the change of variable x2 =
c

2
ξ:

cl ≈ 2α ·
ξ=1∫

ξ=−1

√
1− ξ
1 + ξ

dξ = 2πα

L′ =
1

2
ρU2
∞Scl ≈ ρU2

∞Sπα

3. Calculate the coefficient of moment at the leading edge of the airfoil, cmL.E.
.
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Using the reference system (x2, y2):

cm,L.E. =
1

c2
·

x2=c/2∫
x2=−c/2

[
cp,u(x2)− cp,l(x2)

](
x2 +

c

2

)
dx2 =

1

c2
·

x2=c/2∫
x2=−c/2

−4α

√
1− 2x2/c

1 + 2x2/c

(
x2 +

c

2

)
dx2

Making the change of variable x2 = c
2
ξ:

cm,L.E. = −α ·
ξ=1∫

ξ=−1

√
1− ξ
1 + ξ

(ξ + 1) dξ = −α
2
π

4. Calculate the coefficient of moment at the c/4 point, cmc/4
.

cm,c/4 = cm,L.E. +
1

4
cl

cm,c/4 = 0
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