MAE 104 - SUMMER 2015 Problem Session 3

08-20-2015

Problem 1:

A thin symmetric airfoil is flying with velocity U_{∞} and angle of attack α , as shown in Figure 1. When α is small, the components of the velocity parallel and perpendicular to the airfoil are, for a region near it, $y \ll c$:

$$u(x, y) = U_{\infty}$$
$$v(x, y) = -w(x) + U_{\infty}\alpha$$

where w(x) is the self induced velocity. We want to calculate the velocity field using *Thin* Airfoil Theory.

Figure 1: Thin airfoil.

- 1. First, substitute the thin airfoil by a vortex sheet such that the chord is a streamline. Calculate the intensity of the vortex sheet, $\gamma(\theta)$. Plot $\gamma(x)$.
- 2. Using the previously calculated $\gamma(\theta)$, calculate the vertical self-induced velocity w.
- 3. Calculate the lift.
- 4. Calculate the coefficient of moment around the leading edge of the wing.

Problem 2:

A thin airfoil of chord c is flying with velocity U_{∞} and angle of attack α , as shown in Figure 2. The equation of the airfoil is:

$$\frac{y_a(x)}{c} = \begin{cases} 0 & ; \quad -\frac{c}{2} \le x \le 0\\ -4\varepsilon \left(\frac{x}{c}\right)^2 & ; \quad 0 \le x \le \frac{c}{2} \end{cases}$$

where $\varepsilon \ll 1$.

We want to calculate:

- 1. The angle of attack of the airfoil.
- 2. The ideal angle of attack.
- 3. The lift coefficient.
- 4. The zero-lift angle of attack. Sketch the position of the zero-lift line.
- 5. The moment coefficient around the leading edge and trailing edge.
- 6. The position of the center of pressure.