MAE 119: Intro to Renewable Energy

Challenges to the adoption and large-scale
integration of emergent energy technologies

MAE 119 Lecture
Ahmed Abdulla
Deep Decarbonization Initiative
http://deepdecarbon.ucsd.edu

__________________________________________________________________________________________________
3/5/18 School of Global Policy & Strategy 1


http://deepdecarbon.ucsd.edu

The role of government support

« Varied takes on the role of government in supporting

emergent energy technologies Level of Risk
— Establish coherent Low High
industrial policy -
- e
(China, Japan) = Industry Partnership
— Get out of the g — | (Operational) (Incremental)
business entirely o2
»
S <5, | Partnership Government
o T | (Incremental) (Revolutionary)
L

Abdulla, Ford, Morgan, Victor (2017) ERL
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What happens when you leave the lab?

* Your technology will likely be economically uncompetitive

* You can improve its commercial viability by exploiting
either learning economies or economies of scale (or both):

Learning economies:
Products cost less, and activities take less time, the
more you deploy or repeat them

Economies of scale:
The larger your equipment is, the smaller the cost
per unit output (process being equal)
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The history of learning curves

« First applied in industry by
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Learning (or experience) curves

* Theory based on a doubling of production. If you double
the number of products built, or cumulative capacity of a
technology installed, the cost goes down by x%

Investment costs ($/kW.)

Cumulative installed capacity (kW,)
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The classic one-factor experience curve

where C; 1s
a 1s
X; 1S
b 1s

C.=ax?

the cost to produce the i unit
a coefficient
the cumulative installed capacity through period i

the learning rate exponent

The learning rate (LR) is the cost reduction that occurs after
each doubling of installed capacity. It is defined as:

LR=1-2°
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Application to wide range of industries

LEARNING-
CURVE
CUMULATIVE SLOPE
EXAMPLE IMPROVING PARAMETER PARAMETER (%)
1. Model-T Ford production Price Units produced 86
2. Aircraft assembly Direct labor-hours per unit Units produced 80
3. Equipment maintenance Average time to replace a Number of replacements 76
at GE group of parts
4. Steel production Production worker labor-hours Units produced 79
per unit produced
5. Integrated circuits Average price per unit Units produced 728
6. Hand-held calculator Average factory selling price Units produced 74
7. Disk memory drives Average price per bit Number of bits 76
8. Heart transplants 1-year death rates Transplants completed 79

AConstant dollars.

Module E: Learning Curves in Heizer J, Render B, Munson C (2017) Operations Management:
Sustainability and Supply Chain Management, 12th Edition (Pearson)
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M Crystaline Silicon Panels BFirst Solar Thin Film Panels Bloomberg New Energy Finance (2012)

STUU/watt
S10/watt

S1/watt

LR =20% - 22%
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Figure 10: Past modules prices and projection to 2035 based on learning curve
Technology Roadmap: Solar Photovoltaic Energy (2014) International Energy Agency
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International Roadmap for Photovoltaics (2012)
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(2) Wind power’s learning curve

L International Energy Agency, from Fourth Report on The Economics of Renewable Energy
. Economic Affairs Committee of the House of Lords of the UK
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(2) Wind power’s learning curve

National Renewable Energy Laboratory (2012)
IEA Wind Task 26: The Past And Future Cost Of Wind Energy
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(2) Wind power’s learning curve

* “The initial period of capital cost reductions came to an end
in the early-to-mid 2000s."

« "An important exception to this trend [was] China.”

« "“The emergence of a handful of strong domestic
[manufacturers led to] lower capital costs in China.”

Reasons for this cost increase?

* Increased balance of plant and turbine prices (latter, mostly)
« Commodity and energy prices

« Huge growth in wind power (supply constraints)

« Labor costs

* Turbine upscaling and changes in design
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. Junginger M et al. (2008) Technological learning in the energy sector.
10 Utrecht University and the Energy Research Center of the Netherlands.
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Cottage industry calculating these LRs

Azevedo | et al. (2013) Technology Learning Curves and the Future Cost of Electric Power Generation Technology:

Presentation to the EPRI 18th Annual Energy and Climate Change Research Seminar (Washington, DC).

S O.4
JN DIEC

Number Number Range of Range of rates Years
Number . . i « ;
. of studies of studies | learning rates for “learning by covered
Technology of studies . . « . s
reviewed withone withtwo | for “learning by researching across all
factor factors doing” (LBD) (LBR) studies
Coal Two-factor
PC 2 2 0 5.6% to 12% models 1902-2006
IGCC 1 1 0 2.5%t0 7.6% (projections)
Natural Gas 8 6 2 0.65% t0 5.3% 24%1t017.7%  1980-1998
Nuclear 4 4 0 <0% to 6% 1975-1993
Wind (on-shore) 35 29 6 -3% to 32% 10% to 23.8% 1980-2010
Solar PV 23 22 1 10% to 53% 10% 1959-2001
BioPower
Biomass production 4 4 0 12% to 45% 1971-2006
BioPower generaﬁon 7 7 0 0% to 24% 1976-2005
Geothermal power 3 0 0 1980-2005
Hydropower 3 0 2 0.5% to 11.4% 2.6%1020.6%  1980-2001
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Limitations of the learning curve model

« Simplistic: focuses only on production costs, and needs
virtually impossible decomposition into learning associated
with specific processes:

— Learning by researching
— Learning by building
« Technological, financial, social
— Learning by operating
« Sheds no light on what might be driving costs
« System boundaries (incl. geography) must be delineated

» Leadsto silly discussions (e.g. getting the installation costs
of solar, which start to dominate system costs, down)
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Assessments reveal non-monotonicity

 Increases in the costs of early projects as kinks worked out
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Rubin ES (2010) Uncertainty in Experience Curves for Climate Policy Analysis: Some insights
from case studies. Presentation to the NAS Workshop on Modeling the Economics of
Greenhouse Gas Mitigation. (Washington, DC).
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Economies of scale

« Microeconomic concept that originated with Adam Smith's
theory on the division of labor. Suggests that cost
advantages accrue due to size.

Investment costs ($/kW,)

Size of plant (kW)
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The classic economies of scale model

E=a(C?

where E 1s the cost to produce a piece of equipment
a 1is a coefficient
C 1s the capacity of the piece of equipment

b 1s the scaling parameter
CZ = C] (AXZ/XI b The “.6 rule”

where C;and C, are the costs of two pieces of equipment
X;and X, are their capacities

b is  the scaling parameter
0.6 is the classic scaling parameter
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Engineers went to extremes

“YEs, msmmmm Al RIGHT—- CONSUMERS
AUCLEAR

PR . WSMIM,&D
“The competition to build ever larger WELEAR LOWER DLANT ¢ The ClOssus; WHIGSE CPECATNS Wi COUNENCE
ILLION DOLLARS! 9F

B

plants reached absurd proportions: by
1968, manufacturers were taking orders for
plants six times larger than the largest one
then in operation.”

“the company's main asset, a nuclear
power plant under construction in =
Michigan, became entangled in regulatory M
and financial disputes and construction 2
problems. Financial disaster seemed
imminent when it abandoned the nuclear
plant after spending $4.1 billion on it LI

Bupp IC and Derian J (1978) Light Water: How the Nuclear Dream Dissolved.. Basic Books, NY: 73-74

Hylton RD (1989) Market Place; Nuclear Write-Off To Success Story. The New York Times. : —— s ~= v TR
http://www.nytimes.com/1989/09/25/business/market-place-nuclear-write-off-to-success-story.html
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Economics of scale doomed industry

« Based on a misunderstanding of basic economic theory

3/5/18

Investment costs ($/kW,)

Diseconomies
of scale

N =

Size of plant (kW,)
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Problem not restricted to nuclear power

LBNL-1000917

Utility-Scale Solar 2014

An Empirical Analysis of Project Cost, Performance,

and Pricing Trends in the United States #

A

Authors: Mark Bolinger and Joachim Seel ’\I '

Lawrence Berkeley National Laboratory BERKELEY LAB

September 2015 ¥ Sunshot

Bolinger M, Seel J (2015) Utility-Scale Solar 2014: An Empirical Analysis of Project Cost, Performance, and Pricing
Trends in the United States. Lawrence Berkeley National Laboratory.
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“No...evidence of economies of scale”

5
Markers represent capacity-weighted averages, with 20th and 80th percentiles.
Figure only includes 2014-vintage projects.
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Bolinger M, Seel J (2015) Utility-Scale Solar 2014: An Empirical Analysis of Project Cost, Performance, and Pricing
Trends in the United States. Lawrence Berkeley National Laboratory.
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Problems in technology diffusion

« Even after emergent energy technologies are adopted,
they can sometimes become victims of their own success:

— Financial incentives, such as feed-in-tariffs, can grow
substantially and stress the public purse

Japan and Germany

— Their variability and intermittency leads to reliability
concerns

South Australia and Ontario

— Small operating costs challenge the entire power
system, and require rejigging the whole power market to
ensure the reliability of supply

The merit-order effect
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Variability is only a challenge...

...if you don’t have institutions with the foresight to
ameliOrate or eliminate ito (In rapaciously capitalist economies, this is generally the case)

« Belief that variability can be addressed by transmission:

Supplying Baseload Power and Reducing Transmission Requirements by
Interconnecting Wind Farms

CRISTINA L. ARCHER AND MARK Z.. JACOBSON

Department of Civil and Environmental Engineering, Stanford University, Stanford, California

 Interconnection good, but assuming that wind farms in
different geographic areas will supply base load, especially
based on small wind speed data sets, is foolhardy
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« Geographic diversity to
smooth variability

« The UK’s system operator
is routinely curtailing
100-300GWh of wind

power per month.

« Costing rate payers
millions

Source: Schell K(2018) Source: REUK N d,%o'd . \
Go g€ Ma 8 - x‘_i%l DE/BKG (©2009), Google, Inst. Geogr. Nacional  Terms of Use
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Problem is one of poor institutions

* Mostly, siting of wind farms is based on National
Renewable Energy Laboratory mean annual wind speed
data

« But there are wind droughts, many in places with high
resources. These get their wind resource in short bursts of
extremely high wind. Other areas have lower mean wind
speeds, but little drought
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Power system dynamics due to TX wind

* Enormous influx of wind capacity:
— Required much investment in transmission
— Led to wind curtailment, drove $ to negative territory
« Why is this happening?
— Investment tax credits are given to investors for building
wind farms, regardless of location

— Production tax credits are important, but focus on mean
annual wind speed

— No mention of variability of power due to drought

— This issue might be of no (or little) important to investors,
but extremely important to power system operators
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The merit-order effect

* The merit order is the mechanism by which electricity
market prices are set

« Generators bid-in with their cost of generation

Lower-cost generators supply electricity first

— Renewables are non-dispatchable sources of electricity
— There is no storage, so arbitrage not (yet) possible

— Institutions can also mandate renewables take-oft
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Operating costs (Euro/MWh) Power Demand

Higher prices ...associated with
for electricity low input from
are... renewables
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Electricity ...with higher input
prices are from renewables

reduced

\/

Capacity (GW)

Renewables Nuclear Lignite Hard Coal Natural Gas Oil

https://www.cleanenergywire.org/factsheets/setting-power-price-merit-order-effect



Renewables penetration warps markets

The more renewables penetrate the market, the more they
depress wholesale electricity prices (the duck curve)

The merit order is now a dynamic utilization curve

Eventually, some generators cannot compete, especially it
flexibility becomes a valued trait

Need to be given financial guarantees to maintain their
plants, just in case of wind droughts or intense demand

— Nuclear power plants in highly competitive markets,
which have very low operating costs, are shutting down

They also affect the demand load profiles; hence the
emergence of the duck curve, due to solar generation
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Conclusions

« Technology adoption and diffusion are studied using a
range of methods, all of which have more than their fair
share of weaknesses

* These tools are important, despite their weaknesses, for
evaluating future energy systems

* Important to draw system boundaries and caveat analysis
where any doubts linger

If you think technical challenges are great, wait until
you encounter the economic ones

If you think economic challenges are great, wait until
you face the political and behavioral constraints
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