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Band Theory of Solids: From
Single Attoms...to Solid Crystals
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Band Theory of Solids:

Conductors
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Band Theory of Solids:
Conductors
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Band Theory of Solids: Insulators

e Carbon in Diamond
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Band Theory of Solids:
Semiconductors

* Some crystalline
materials have smaller

band-gap energy
« At low temperatures P
behave like insulators l s hend
— Epg~1eV >> Temperature T L l\;.;lu[:l”w
 With an electric field ~1eV ‘

— Electrons gain energy

— Can move into upper
(conduction) band



S1 as a Semiconductor Material
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N-type Semiconductor Materials
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N-type Si has an extra electron for each dopant atom,
This electron 1s mobile
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P-type Semiconductor Materials
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P-Type
Semiconductor

P-type Si1 has a “hole” (1.e a missing electron) that acts like
A mobile positive charge
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Dopants create allowed energy states between the
pure material valence and conduction bands

e Pure semiconductor matl’s

conduction and valence

bands separated by Egap / Conduction band \
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Basics of Solar PV Cells

* Key Concepts
— Un-1lluminated p-n junction diode
— Photon Energy Spectrum
— Charge Carrier Generation Via Photon Absorption
— Charge Carrier Loss Mechanisms
— [lluminated p-n junction diode: The Solar PV Cell
— Solar PV Cell’ s as an Electricity Source
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A Solar PV Cell 1s just a p-n junction
(““‘diode”) 1lluminated by light.. ..

Photon
Flux with E>Egap

Examine

\ This p-n Junction...
P-type




Simplified Model of PV Cell:
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Conduction Band & Valence Band

Energy Levels in SEPARATE p-type
and n-type materials
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Conduction Band & Valence Band
Energy Levels 1n p-n junction

« THERE CAN ONLY BE
ONE FERMI ENERGY IN

” : A SYSTEM AT EQUIL (1)

"
Traen.f;i::‘on i Re Sult :

___——_"—_—__‘.— _____ T T TE N N
TROIT000000 ™, EHTI(NC,ND, Vo =Eln( & D)

2
" q n;

Figure 4.3. A p-n junction formed by bringing the iso
lated p-type and n-type regions together. Also shown is the
corresponding energy-band diagram at thermal equilibrium,



P-N Junction formed by joining p & n type materials
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Equilbrium potential develops
across the p-n junction
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Now connect p and n regions via external circuit

PN Junction
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gio g R

- - -+ |+ =
- - +

I B B —\W\

4L

- - = + = 4k

R I
Zero Bias

Built-in

0.3-0.7V

http://www.electronics-tutorials.ws/diode

19



Connecting w/ext. circuit and adding an external bias that
ADDS to natural bias (“Reverse” bias) widens depletion zone
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Connecting w/ext. circuit and adding an external bias that
ADDS to natural bias (“Reverse” bias) widens depletion zone
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Current-voltage response for reverse bias

Reverse Voltage, [ -VR )
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Current-voltage response for reverse bias

Hard for current to flow...
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Canceling out natural bias (1.e. “Forward Bias”)
Causes current to flow!

PN-junction
N-region t P-region
= | R =
& - ;-.|. + +‘ Ip Imax
SR ] 5 L
—I . 1| s I— -
77+ +" ]
& 1! L¥- + + +
very small - +
depletion layer N H °
- -
{|— - |I o ° ° o

Forward Biasing Voltage

Forward bias reduces width of depletion zone &
“injects” minority carriers (1.e. holes in N-region,
Electrons in P-region) which can then diffuse thru that zone
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Current-voltage response forward bias

Forward Current
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When forward bias voltage reaches or exceeds the
Natural bias of the p-n junction, large current can
Begin to flow
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Current-voltage response forward bias

Forward Current

(IrmA) EASY for
10 current to
8 . flow...
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When forward bias voltage reaches or exceeds the natural bias of
the p-n junction, large current begins to flow
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Diode current-voltage characteristics
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