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What time is it in the world...

...and where are we goinge

Center for Energy Research
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This is THE question facing
humanity today...

...and energy access
places a key role in the
answer.




Part I: What Drives our Energy
Demand, and Why Should We
Caree
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Human Population Since Last Ice Age

estimates start at around 5 million humans around 8000 BCE
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World primary energy demand since 1850
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Hydro+ means

hydropower plus
other renewables
besides biomass

Energy supply grew 20-fold between 1850 and 2000. Fossil fuels
supplied 80% of the world’s energy in 2000. From Holdren (2007)




Population & Resource Availability
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Why Care About Energye

“All ancient civilizations, no matter how enlightened or
creative, rested on slavery and on grinding human
labor, because human and animal muscle power
were the principal forms of energy available for
mechanical work. The discovery of ways to use
less expensive forms of enerqy than human
muscles made it possible for men to be free.”

R. Revelle, Science 192, 969 (1976).
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Child Mortality Correlated fo Energy Access
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Life Expectancy Correlated w/ Energy Access
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@ Various sources
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Literacy Correlated to Energy Access
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Human Development Index & Energy Access
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LARGE Variations in per-capita Energy Access

Indicators: Color= Log (Energy/per-capita); Size: Population
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~3.5 Billion People Live w/o Adequate Access to Energy

~2 Billion are Climbing the Energy Ladder
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Most of Humanity Needs MORE Energy

Center for Energy Research

“The test of our progress is not

whether we add more to the

abundance of those who have much:;

it is whether we provide enough for

those who have too little.”
F.D.Roosevelt, 1937
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Energy Access is also Correlated
With Population Growth Rates &
Thus is Linked to Stabilizing Global

Human Population
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Energy Access Linked to Population Growth Rate
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Implication for Stabilization of Population Growth

Let Population at t=0 be P,

Annual population growth rate decreases by factor, <71, each year, i.e.

n=

2
= =1
rn = fnrO

Then Population after i years is given as
P=P+AP(I+f+f +..+f)

=P+ Py(I+ f+ 7+t f)

j=0,i

CER o~
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Implication for Stabilization of Population Growth

For | — oo can note that the infinite series is given as

|
ij__f. <1

j=0,i
lim i—e

Thus for given P, and r, can solve for growth rate decrement, f, needed to
Yield a final population as ;; — oo

~1
P
=1-r|——1
)

Apply to current global situation, for stable population of 11 Billion, require f~0.97
Which implies 2-4x increase in per-capita energy access,

CER o
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mplication: Energy Demand will Increase!

Annual Population Growth Rate
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Part II: Our Current Energy Economy is
Unsustainable...

due to both Resource Limits &
Global Climate Change

Center for Energy Research
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Where Does This Energy Come From?

Source 10'8 Joules/yr Percent of Total
Petroleum™ 158 40.0
Coal* 92 23.2
Natural Gas* 89 22.5
Hydroelectric* 28.7 7.2
Nuclear Energy 26 6.6
Biomass (burning)* 1.6 04
Geothermal 0.5 0.13
Wind* 0.13 0.03
Solar Direct* 0.03 0.008
Sun Abs. by Earth* 2,000,000 then radiated away

* Ultimately derived from our sun

Center for Energy Research

Courtesy David Bodansky (UW)
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History of world supply of primary energy:

EJ/year
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Hydro+ means

hydropower plus
other renewables
besides biomass

Energy supply grew 20-fold between 1850 and 2000. Fossil fuels

supplied 80% of the world’s energy in 2000.

From Holdren (2007)




How do we use energye

Residential &
Commercial (9.4%)

/

Electric Utilities
(35.6%)

Industrial
(26.7%)

Natural Gas

- Petroleum

M co
- Nuclear

Hydroelectric

Other
Transportation (28.4%) -
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Fossil Fuels are a Finite Resource

An Example from History: British Coal Production 1800-2000
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The Hubbert Curve

HUBBERT CURVE
Regional Vs. Individual Wells
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Looks at Production v. Resource — US Data

Y=a+mX
P/Q=a—(alQ,)
P=a(1-0/0Q,)Q
where

P=dQ/dt

PIQ

0.05 )
Peak Production;

half consumed
/ 1970

0 100 200
Q (billion barrels)
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Plot rate of production (P:
annual production)
divided by resource (Q:
total produced to date)
against total resource, Q
— P/Q s like an interest rate:

fractional increase per year
A “logistic” or S-curve
would follow a straight
line sloping down

U.S. oll production does
so after 1958

When you get to zero P/
Q, you've hit the end of
the resource: no more
production
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Same fit, in Production v Time plot for U.S.

 The best-fit line on
the previous plof ‘-
oroduces @
decent fif to the
rate history of oill
production in the
U.S.

e Supports the peak
position well, and
implies a total .
resource of about o L L L
225 Gbbl P

U.S. Oil Production (billion barrels per year)

CER o~
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Global Annual Discovery & Production — Conventional

THE GROWING GAP
Regular Conventional Oil
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Production v. Resource — Global

10 p—

P/QQ—Annual Percent Growth

Cumulative Trillion Barrels

 About haltway along 2,000 Gbbl at 2005 implies
we're roughly at the peak (for conventional oll)
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Petroleum Production Likely Peaks in 2015-2025

Unconventional
Resources (Tar Sands,
5.0E+10 | Shale Qil, ...)
—2x10"12 bbl Simply
Delay the Peak by
Decade or Two

—==4x10"2 bbl

3.0E+10 - T ACTUAL

2.0E+10 -

1.0E+10 -

Annual Global Production (bbl/yr)

0_0E+00 T T T T T T T T T 1
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Year

Gas & Coal will Follow Similar

Trends Later in Century _
CER =
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We've Been Here Beforel

Projected Reserves & Actual British Coal Production

1871, 1905
Royal Commissions 3 1000 &
Historical — Estimated | é
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We live in a special time and place...

e Most of history we used < 100 Watt per human; currently we
use ~10000 Watt per human continuously! Big change
makes big change in lifestyle possible

e This phase has only lasted for the last century or so

e Most of our resources come from fossil fuels presently, and
this has a short, finite lifetfime

e Access to this resource is HHGHLY variable around the world!

Fossil fuel usage

I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000

year
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Part II: Our Current Energy Economy is
Unsustainable...

due to both Resource Limits &
Global Climate Change

Center for Energy Research
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So far... Energy Access = CO2 Emissions
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Earth’'s Thermal Balance

The Greenhouse Effect

NATURAL GREENHOUSE EFFECT
The greenhouse effect is a natural warming process.

ENHANCED GREENHOUSE EFFECT
Increasing the amount of greenhouse gases

Carbon dioxide (C02) and certain other gases are intensifies the greenhouse effect. This side

always presentin the atmosphere. These gases create
awarming effect that has some

similarity to the warming inside a e -
greenhouse, hence the name 91 ;
“greenhouse effect.”

of the globe simulates conditions today,
roughly two centuries after the
Industrial Revolution began.

© The National Academy of Sciences, USA

lNlustration of the greenhouse effect (courtesy of the Marian Koshland Science Museum of the National Academy of Sciences). Visible sunlight passes through
the atmosphere without being absorbed. Some of the sunlight striking the earth @ is absorbed and converted to heat, which warms the surface. The surface
@ emits heat to the atmosphere, where some of it @ is absorbed by greenhouse gases and @ re-emitted toward the surface; some of the heat is not trapped
by greenhouse gases and @ escapes into space. Human activities that emit additional greenhouse gases to the atmosphere @ increase the amount of heat

that gets absorbed before escaping to space, thus enhancing the greenhouse effect and amplifying the warming of the earth.

www.pewclimate.org & National Academy of Sciences

Center for Energy Research
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The Carbon Cycle et schimel, Nature 393, 208 (1998)

Fossil-fuel fluxes The atmosphere
Today 6.3 Today 360 p.p.m.v.
2070° 16.0 20707710 p.p.m.v.
Land use Land
LE ‘ change gljptake 8°§?(2
‘ Today 11 oday ~2 oday ~2
2070° 0.5 2070 ~3.4 2065 ~4.3

scenario cycle models
| Climate / \
B simulation \ /

Figure 1 Present-day fluxes of anthropogenic CO, compared with estimated fluxes for the year 2070
(or 2065 in the case of Sarmiento et al.’). Units are 10" g yr™' unless stated otherwise; p.p.m.v., parts
per million by volume. The estimates for 2070 (2065) are taken from IPCC IS92a figures, or in the
case of land uptake® and ocean uptake’, are from models of the response of land and oceans to climate
change using 1S92a as input; 1S92a, or IPCC Scenario 92a, gives projections of increasing emissions of
CO, from use of fossil fuels, assuming moderate growth rates. The inset at bottom left indicates how
scenarios of increased anthropogenic emissions of CO, feed into climate simulations and then
models of the carbon cycle.

=0CER o~
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Simple Carbon Balance Model lllustrates the Problem

Q. C injection rate

M, - Land C Mass

Atmospheric C dAM, AM,
- ¢ — Qc -
Mass Balance: dt T,y
e T = 1% ’
with: Ty = T i1, " 100’s years
Assume Diffusive- r o McO-M,
like Fluxes: o T, 0

Center for Energy Research

M. Atmospheric C Mass

Mg - Ocean C Mass

Response to Step-

function Q_ =const
for t>0:

AM: =0 T4 (1 - exp(—t /Ty ))

C
l‘-J Iy
o
&
]
Q
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0-D Globally Averaged Carbon Balance (cont’'d)

Response to Step-function Q. =const for t>0:
AM: =0 T4 (1 — exp(—t /Ty ))

Solution for timescales short compared to 1, (~100’s years)

AM. = Q. t

= The Atmosphere Simply Accumulates the
CO2 We Inject

= IF WE WANT TO STOPACCUMULATING CO,
BEFORE 100°S YEARS PASS THEN Q;_ =2 0! -

A
[1j=8

Center for Energy Research uc



Emission paths for stabilizing CO, concentrations

20
15
P
o o
O
8 10 :
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S 8 8 8 & 8 8 g g g s8
x>
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The path to avoid AT, , >2°C (gold) requires much earlier, more drastic
action than path to avoid >3°C (green).

Source: IPCC & J. Holdren 2007 AAAS Plenary Lecture
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Part lll: What Will It Take to Meet Human
Energy Needs AND Avoid Unacceptable
Global Climate Change?

Center for Energy Research
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Scale Matters

Current Global Total Power Demand:
About 14,000 Nuclear or Coal Power Plants, or 20,000 bbls/sec
14,000,000 Wind Turbines or 40,000 sq miles PV

1 103 106 10° 1012
1 1 1 1 1

W kW MW GW TW
ource: Powering the Planet, Nathan S. Lewis.

o))

CER —
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Need to Meet Demand & Stabilize CO, Levels

e Key Factors in Projections

— Population Stabilizes at 10 Billion

— Energy Access Gradually Spreads to Majority
of Population,

— Energy Intensity Decreases 1%/yr

— Carbon Intensity Decreases to CH4 Level in
2030 & Keeps Decreasing(!)

e Model Carbon Cycle

— Human & Natural Emissions, Biosphere &
Physico-Chemical Uptake

e Solve for Total Energy Demand & Fraction
that Must be Carbon Free
-CER

\-
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Projected Carbon-free Power Required

50 [ 1 1 1 1 1 1 1 1 1 1
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Hoffert et al, Nature 395, 881 (1999)
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The Challenge and Opportunity

- Quality of Life & Sustainability Both Imply

Increased Global Energy Demand

« Current Fossil Fuel Sources are Finite &

Have Serious Global Environmental
Impacts

> WE NEED CLEAN ENERGY SOURCES
AT RELEVANT (10’s TW-yr) SCALES

Center for Energy Research
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Part IV: What are our options, which
ones scale, and how long will the
needed fransition take<¢

Center for Energy Research
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Many Potential Options are Discussed...

e Waves

e Tides

e Ocean Currents
e Ocean Thermal

e Conventional
Geothermal

e Deep Geothermal
e Food-to-Ethanol

e Unconventional
~ossil Fuels w/ CCS

Center for Energy Research

e "Negawafttfs”

e Solar PV

e Solar Thermal

e Wind

Advanced Biofuels

Synt
PNOf
NUC
NUC

nefic
‘osynthesis

ear Fission
ear Fusion

)
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Options That Could Scale:

Center for Energy Research

Efficiency, Usage, & Carbon Intensity Improvements
— Can Slow Rate of Increase But Not Reverse Trends

Carbon Sequestration (G-tonnes/yr)
— Large Potential ... but Undemonstrated at Scale

Solar & Wind

— Requires Large Land Area (104-10¢ km?) in Remote Locations with
Large-scale tfransmission)

— Intermittency Forces Massive Storage, Accurate Forecasting, Backup
Power & Will Limit Maximum Market Penetration
Next-gen Bio-Fuels or Synthetic Photosynthesis
— Requires Large Land & Water Resources,

Nuclear Fission
— Long term —requires closed fuel cycle or
— Requires Pu Economy or Th-based reactors)
— Public Acceptance?

Nuclear Fusion
— Large Resource (>>1000 years)
— No Long-lived Acftinides
— Potential Safety Advantages w/r/t Fission
— Potential (w/ Adv. Mat’ls) for Low Level Waste Disposal —

\-
UCSanDiego




Solution Requires “Cocktail Approach”

T Source: Socolow Science, 2004
Billi f T f /'
14+ Billion of Tons o 7
Carbon Emitted per 14 GtCly
Year
«— Seven “wedges’
Historical
ar - , 7 GtCly
emISSIO{SA S Flat path
1.9->
O T | >
1955 2005 2055 2105
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What is a “Wedge'e

A “‘wedge’ is a strategy to reduce carbon emissions that grows in 50 years
from zero to 1.0 GtC/yr. The strategy has already been commercialized at
scale somewhere.

1 GtClyr

50 years >

A

Cumulatively, a wedge redirects the flow of 25 GtC in its first 50
years. This is 2.5 trillion dollars at $100/tC.

A “solution” to the CO, problem should provide at least one wedge.

Source: Socolow, Science 2004




Meeting Demand & Stabilizing C-Emission Requires

e 5M Acres of PV (1000x today’s installed
capacity)

e 1M 2MW Turbines (~2M km?)

e 800 “Clean Coal” Plants (hone today)

/00 New Nuclear Power Plants (~2x current
fleeft)

e Record Efficiency Improvements
e Replace Pefroleum fuels w/ Biofuels
e 2-3x Increase in Vehicle Fuel Efficiency

)

Center for Energy Research



Will Require ~100km x 100 km PV
installation or ~100 Million Rootops




Will Lead to ~1M Large (~3MW) Wind
Turbines Covering ~10° km?

)



Efficient Use of Electricity

buildings

Effort needed by 2055 for 1 wedge:

25% - 50% reduction in expected 2055
electricity use in commercial and
residential buildings

Socolow, Science 2004

\-
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Efficient Transportation

Effort needed by 2055 for 1 wedge:
2 billion cars driven 10,000 miles per year at 60 mpg instead of 30 mpg.

1 billion cars driven, at 30 mpg, 5,000 instead of 10,000 miles per year.

Source: Sokolow, Science 2004

CER —_—
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Carbon Capture and Storage

The Wabash River
Coal Gasification Repowering Project

Graphics courtesy of DOE Office of Fossil Energy

——1
——

Center for Energy Research

Effort needed by

2055 for 1 wedge:

Carbon capture and
storage at 800 GW
coal power plants.

Sokolow, Science
2004
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Next-generation biofuels

UCSD- Plant and Algae BioEnergy Field Stationﬁ' :
|/ A S = S o e
" | 57,

2! Industrial ey
Enzymes -
. Proteins s/ Genetic Tools ¢ 52
Crop Protection >arbohydrates i
LT M

~
Nutraceuticals

Anaerobic
Digestion

Nutrient
Inputs

Methane/

Nutrient Utilization Energy

and Recycling

Will need 100’s of km? of
Algae biofuel production...

Center for Energy Research
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Next Generation Nuclear Fission

e Passively Safe Reactor Core

e Proliferation Resistant Fuel Cycle
w/ Reprocessing

e Process Heat, H Production
e Electricity
e Geological Waste Disposal

Effort needed by 2055 for 1 wedge:

700 GW (twice current capacity) displacing
coal power

Source: Sokolow Science 2004

Graphic courtesy of General Atomics

CER o

Center for Energy Research uc SanDiego




Part IV: How long does it take to grow
these new energy source
technologies to the required scale<

Center for Energy Research
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Center for Energy Research

Look at How New
Technologies Supplant
Older Technologies in
the Marketplace

This is a Well-studied
Subject...

9
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Methodology

* Take Historical Data for Absolute Energy
Use

e Find Total Energy Demand v. Time

e Find f(t) for Each Energy Source

e Use Fischer-Pry Approach to Model Data
e Result...

Source: Marchetti, Tech. Forecasting and Social Change 10, 345-356 (1977)

k
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Market Fraction - Primary Energy Sources - 1860-1980

1.0

Here the contributions of the various primary sources are shown
as fractions of the total market. The smooth curves are two-parameter
logistics assembled in a system of equations as described in the text.
The firting appears perfect for historical data.

Source: Marchetti, Tech. Forecasting and Social Change 10, 345-356 (1977)

=0CER o~
Center for Energy Research uc SanDiego




Takeover Times - Primary Energy Sources - 1860-1980

 Time to go from 1% to 50% of Energy
Market Is Long (>50years!)

Primary Penetration
Source Time (years)
Wood -60 years
Coal 66 years
Oil D2 years
Gas 95 years

Center for Energy Research

Source: Marchetti, Tech. Forecasting and Social Change 10, 345-356 (1977)




But It's 2012 and our C Emissions are Still Growing(!)

EMISSIONS Irajeciories CONSISIent Witn various
Atmospheric C0; Concentration Ceilings

20

WE ARE ON
THIS PATHWAY

N
[}

10

Billions of Tonnes of Carbon

(=] [} (o] (=]
D N Lo <«
(== e < =
N N N N

Source: IPCC & J. Holdren 2007 AAAS Plenary Lecture

Q: What Can Be Done NOW?

2210
2240
2270
2300
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Reduce Short Lived Climate Change Gases

-."a
%,
B e
o’

DI’OjeCt surya

3+ Billion Rely on Biomass Fuel

":
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The Surya Experiment

For ~1000 Families

. 4 )
% 2 LI
17| ¢ {
\
'y
‘nar

Mud Stove .. Improved Cookstove

®m Breathing Zone
O Plume Zone
500 -
3 = = Measurements
200 b
§‘°°‘ l L1 - | | Demonstrate
d [ . = Large Pollutant
: i I - Reductions with
= . .
2 1 Global Implications.|.
10 +* *
deitiolnaIMJd Natudleft FometliDraﬁ
Cookstove Type
CER V. Ramanathan, SIO =
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Wide-spread Adoption Delays >2deg C Warming

HOW TO ENABLE

w

O | ====GHGsony RAPID SPREAD?
(@) m— C02+S02 mitigajfon .
& | — Fuil mitigation ' > e Create Profit
o Incentive for
%1_ " Adopters
S |2o 3 | e Drive Down Costs
S o —— * Enable Widespread
2 | | ) Community-led
1900 1950 2000 2050 2100 SOCiCII Up.l.ake

vedr
Ramanathan and Xu, PNAS 2010

Buys Critical Time for Energy
Technology Transition & avoids
3M premature deaths/Year

A

Center for Energy Research
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But Long-term, Carbbon Emissions Must Vanish

Source: Socolow, Princeton Univ.

21 ons vs,\f’,.v 2054: 50% below BAU
Carbon G"g."'. 2104: 90% below BAU

1954 2004 2054 2104 2154 2204

Must Transition to a nearly C-free Energy

Economy during Second Half of 21st Century!
<=BER -
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BUT... Long-term Carbbon Emissions Must Vanish

Source: Socolow, Princeton Univ.

Y

o’b
21 ons >y |2054: 50% below BAU
Carbon P 2104: 90% below BAU
per Year \)é\f:"“

This is where fusion
Could play a role

for Energy Research uc SanDiego




Progress towards fusion energy

100
Fusion Plasma
Conditions -

— \ Q ~0.01

s 10 -

2 Tokamaks 1990-1999 .

@

E Q ~0.001
o 1~ T
N Performance Extension
o
P
S—

g @© Stellarator 2003
= Y5 © Swlarator 1998

| =4

0.01

0.0001

—
—
——1
——
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Deuterium Plasmas

Tokamaks 1980
ST 2003” .-

Stellarator 1996

— Proof of Principle

1968 ST 1998 - T~Tandem Mirror 1989
T3 ©——Spheromak 1989
1

.ST 1999 Concept Exploration

< -~ Fleld Reversed Configuration 1983-91
T3y <> Reversed Field Pinch(Tg) 2000

1965 1
0.1 1 10 100
Central lon Temperature (keV)

100

Deuterium - Tritium Plasmas

Burning Plasma 1‘,(,‘1 h"‘ \W/
Q~10

Alnoha Dominated

7 \ ITER
g Q = WEeyusionWinput
E W = energy Tokamaks 1993-99
% 1~ a -0.1\/
&
#l Q ~0.01
- 01} Laser 1996
’.E. \.Dluct Drive
Q ~0.001
e Laser 1988
0.01 - Direct Drive
Q ~ 0.0001
Laser 1986
0.001 - Indirect Drive
Q ~ 0.00001
0.0001 1 \L,, —
0.1 1 10 100

Central lon Temperature (keV)

Ref: Greenwald Report
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Tokamak evolution

|
MHL rx !

=0CER -
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Key Issues for Fusion Energy Production

Produce Plasmas w/ Sufficient Confinement &
Pressure (Turbulence, MHD)

Achieve Burning Status (Q>5 or so) (Fast Particle
Physics)

Produce Sufficient Tritium (Mat’ls, Nuclear
Engineering)

Maintain such a state indefinitely (Current Drive,
PMI)

Achieve very low disruption probability
(<Tdisruption/year) & mitigate when disruption
OCCUIS

Develop materials that survive radiation
environment (Mat'l Science)

Center for Energy Research



Key Issues for Fusion Energy Production

I« Produce Plasmas w/ Sufficient Confinement &

| Pressure (Turbulence, MHD)

:  Achieve Burning Status (Q>5 or so) (Fast Particle

l__P_h_YEIEE) ___________________________ |TER
e Produce Sufficient Tritium (Mat’ls, Nuclear
Engineering)
 Maintain such a state indefinitely (Current Drive,
PMI)

 Achieve very low disruption probability
(<Tdisruption/year) & mitigate when disruption
OCCUIS

e Develop materials that survive radiation
environment (Mat'l Science)

CER o~
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Epillog: Why Fusione

Center for Energy Research

The World Desperately Needs
An Energy Source with the
Characteristics of Fusion but...

Even with Success in ITER, First Fusion
Power Isn't Until ~2040 at earliest!

We CLEARLY also need all the other
scaleable sources & efficiency
Improvements



We Need to Take the Long View
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Today’s Decisions Have Long Term Consequences
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