MAE 119 Professor G.R. Tynan Winter 2015 Quiz 3 Closed Book/Closed Notes

In our simple carbon balance model, we assumed that the flux of C between the atmosphere and land & ocean was proportional to the deviation of carbon concentration from the equilibrium value. The atmospheric carbon balance model could then be written as

$$\frac{\partial}{\partial t} \delta M_C(t) = Q_C(t) - \frac{\delta M_C}{t_{net}}.$$

Where t_{net} denotes the effective timescale for atmospheric C exchange with the Earth's surface and oceans, $\delta M_c(t)$ denotes the deviation of the atmospheric carbon content away from the equilibrium value, and $Q_c(t)$ is the carbon injection rate from fossil fuel combustion.

Suppose the carbon source, $Q_C=0$ for time t < 0, and then at t=0 the carbon source injection rate instantaneously increases to $Q_C = 10$ GigaTonnes/year and is held constant. The effective absorption timescale is given as $t_{net} = 1000$ years.

- a) For time t < 0 what is δM_c ? 10 POINTS
- b) Just after the source is turned on (i.e. 0< t << 1000 years) δM_c hasn't changed much from the t<0 value. In this case, the differential equation for δM_c can be simplified by neglecting a term. What does the differential equation look like? 10 POINTS
- c) What is the approximate functional form for the growth of δM_c for 0< t << 1000 years, i.e. shortly after the source is turned on ? 10 POINTS
- d) Sketch the time evolution of δM_c for t approaching 1000 years and longer. How long will it take for δM_c to get within about 70% of its final value after the change in injection rate at t=0? One significant figure will suffice. 10 POINTS

(a)
$$Q_{c.} = \begin{cases} 0 & t < 0 \\ 10 & t \\ 10 & t \\ \end{cases}$$

 $\int M_{c} = Q_{c.} t_{net} (1 - e)$
 $t < 0 \quad Q_{c.} = 0 \quad \Rightarrow \quad \int M_{c} = 0 \quad + 10$

$$f_{0} = \frac{1}{2} \circ Q_{c}(t) = Q_{co} = 10 \text{ GTonnes}/y,$$

$$f_{0} = \frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} - Q_{c} \right) \right) \right) = Q_{co} t$$

$$\int_{0}^{t} \left(\frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} - Q_{c} \right) \right) \right) = Q_{co} t$$

$$\int_{0}^{t} \left(\frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} - Q_{c} \right) \right) = Q_{co} \cdot t \text{ and } t$$

$$\int_{0}^{t} \int_{0}^{t} \frac{1}{2t} \int_{0}^{t} \left(\frac{1}{2t} - Q_{c} \right) + \frac{10}{2t} \int_{0}^{t} \frac{1}{2t} \int_{0$$