MAE 119 Professor G.R. Tynan
 Winter 2013
 Quiz 3
 Open Book/Open Notes

In our simple carbon balance model, we assumed that the flux of C between the atmosphere and land \& ocean was proportional to the deviation of carbon concentration from the equilibrium value. The atmospheric carbon balance model could then be written as

$$
\frac{\partial}{\partial t} \delta M_{C}(t)=Q_{C}(t)-\frac{\delta M_{C}}{t_{\text {net }}}
$$

Where $t_{n e t}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$ denotes the effective timescale for C exchange with the Earth surface and oceans, $\delta M_{C}(t)$ denotes the deviation of the atmospheric carbon content away from the equilibrium value, and $Q_{C}(t)$ is the carbon injection rate from fossil fuel combustion.

Suppose the carbon source, $Q_{C}(t<0)=8$ GigaTonnes/year, is constant for time $t<0$, and then at $t=0$ the carbon source injection rate is doubled so that for $\llcorner 0$ $\mathrm{Q}_{\mathrm{c}}(\llcorner 0)=16$ GigaTonnes/year. The effective absorption timescale is given as $t_{\text {net }}=100$ years .
a) For very early times (ie. $\mathrm{t} \ll 0$) what is δM_{C} ? 5 POINTS
b) For very late times (ie. $t \gg 0$) what is δM_{C} ? 5 POINTS
c) Sketch the time evolution of δM_{C}. How long will it take for δM_{C} to get within about 70% of its final value after the change in injection rate at $\mathrm{t}=0$? One significant figure will suffice. 5 POINTS
d) For very late times (ie. $t \gg 0$) what will be the value of the IR transmission coefficient relative to the value it had at very early times (i.e. t<<0)? 5 POINTS

EXTRA CREDIT (10 POINTS):

Find the time evolution of $\delta M_{C}(t)$. Hint: You don't have to solve the model ODE. Instead, note that this model is linear and so solutions and C sources can be superimposed.

Solute:

$$
\delta M_{c}=Q_{c} t_{\text {neat }}
$$

Solute:

$$
\begin{aligned}
& \delta M_{c}=Q_{c} t_{\text {nat }}\left(1-e^{-t / t_{\text {net }}}\right) t>0 \\
& \delta M_{c}=0 \quad t c 0
\end{aligned}
$$

\therefore total solus

$$
\begin{aligned}
& \delta M_{c}=Q_{c} t_{0} \text { nat }+Q_{c_{0}} t_{\text {net }}\left(1-e^{-t / t_{\text {ret }}}\right) \quad t>0 \\
& \delta M_{c}=Q_{c_{0} t_{\text {net }}\left(2-e^{-t / t_{\text {net }}}\right) \quad t>0}^{\delta M_{c}=Q_{c_{0}} t_{\text {net }} ; t<0}
\end{aligned}
$$

Quiz 3 (cont'd)
(d)

$$
\beta_{1 R}=\exp \left(-\sigma n_{g g} d\right)
$$

$n_{g g}=\frac{M_{g g}}{m_{g g} V}$ where $m_{g 9}$ is molecular mas of CO_{2} and V is atmospheric Volume
thus

$$
\begin{aligned}
& \frac{\left.\beta_{i R}\right|_{t \rightarrow 0}}{\left.\beta_{I R}\right|_{t<0}}=\frac{\exp \left(-\left.\left(\frac{\sigma d}{m_{g g} V}\right) M_{g g}\right|_{t>1}\right)}{\exp \left(-\left.\left(\frac{\sigma d}{m_{g g} V}\right) M_{g g}\right|_{t \ll 0}\right)} \\
& =\exp \left(-\frac{\sigma d}{m_{g g} v}\left(\left.M_{9 g}\right|_{t>0}-\left.M_{99}\right|_{t \ll 0}\right)\right) \\
& \text { but }\left.M_{g g}\right|_{t>0}=\left.2 M_{g g}\right|_{t<c 0} \\
& \left.\therefore \frac{\left.\beta \beta_{1 R}\right|_{t \rightarrow 0}}{\left.\beta_{1 R}\right|_{t<c 0}}=\left.\exp \left(-\frac{\sigma d}{m_{g S} V}\right) M_{99}\right|_{t<10}\right)=\left.\beta_{\mid R}\right|_{t<c 0} \\
& \left.\therefore \beta_{1 R}\right|_{t \gg 0}=\left(\left.\beta_{\mathbb{R}}\right|_{t<\mathbb{C}_{0}}\right)^{2}
\end{aligned}
$$

