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Background 

• EPRI has developed the REGEN model to assess the 
technical, economic, and environmental impacts of U.S. 
energy supply options and policies   

• Assumptions about the future cost of energy supply 
technologies are critical to model projections; at the present 
time EPRI uses exogenous specifications of technology-
specific capital and O&M costs over time. 

• Various types of “learning curves” (experience curves) also 
have been proposed to relate future technology costs to key 
parameters such as installed power plant capacity and other 
factors 

• However, there has been little systematic study of how 
alternative cost projection methods and models affect the 
outcomes of large-scale energy-economic models 
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Study Objectives 

• Conduct a literature review to characterize the current 
state of technology learning models for different types 
of electric power plants 

• Review selected large-scale computer models that 
incorporate endogenous technology learning to draw 
insights about effects on model results 

• Suggest preliminary computer experiments in REGEN 
to study the impacts of alternative cost projections 
(based on learning models) 

• Provide recommendations for future testing and 
representation of technological change in REGEN 
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Technologies of Interest 

• PC plants  

• PC with CCS  

• IGCC plants  

• IGCC with CCS  

• NGCC plants  

• NGCC with CCS  

• NG turbines  

• Biomass plants 

• Nuclear  

• Hydroelectric 

• Geothermal 

• On-shore wind 

• Off-shore wind 

• Solar PV 

• Conc. solar thermal 
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Draft Report Under Review 
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I will present a few highlights from our report 



Theory of technological change 

and learning rate results  
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Theory of Technological Change 

Key drivers of cost reduction include: 

• Diffusion/adoption of technology 

• Research and development (R&D) 

• “Cluster” learning 

• “Spillover” effects 

• Policies that promote the above 

Various types of quantitative models have been 
proposed to account for these effects 
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One-Factor Learning Curves  
are the Most Prevalent 

where, 
 Ci = cost to produce the i th unit 

 xi = cumulative production or capacity thru period i 

 b = learning rate exponent 

 a = coefficient (constant) 

General equation: 

- Fractional cost reduction for a doubling of cumulative  
production is defined as the learning rate:  LR = 1 – 2b 

 

Ci = a xi 
–b 

  - Some studies report the progress ratio:  PR = 1 – LR 
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Examples of One-Factor Learning 
(Experience) Curves—Wind Farms  

Source:  Junginger 2005 
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Histogram of Reported Learning Rates 
 for On-Shore Wind Turbines 
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Learning Rates for Solar PV 
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Histogram for Solar PV 
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Examples of One-Factor Learning 
Curves for Power Plant Components  
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Reported Cost Trends for  
U.S. and French Nuclear Plants 

Source: Grubler, 2010 
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Two-Factor Learning Curves 

Model form:   Ci  = ai  (xi 
–bLBD) (RDi 

–bLBR) 
 

where:   

Ci     = unit cost of technology  

xi      = cumulative adoption of technology i 

RDi  = cumulative R&D investment or knowledge stock for i 

bLBD = learning-by-doing parameter 

bLBR = learning-by-researching parameter 

ai     = unit cost at unit cumulative capacity and knowledge stock for I 
 

These models suggest that R&D expenditures 

contribute significantly to cost reductions; but … 
 

Data limitations have limited the practical 

applications of this two-factor model 
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Range of Technology Learning 
Rates from the Literature Review 

Technology  

Number 

of studies 

reviewed 

Number 

of studies 

with one 

factor 

Number 

of studies 

with two 

factors 

Range of 

learning rates 

for “learning by 

doing” (LBD) 

Range of rates 

for “learning by 

researching” 

(LBR) 

Years 

covered 

across all 

studies 

Coal 

PC  2 2 0 5.6% to 12% 1902-2006 

IGCC 1 1 0  2.5% to 7.6% (projections) 

Natural Gas 8 6 2   0.65% to 5.3%  2.4% to 17.7% 1980-1998 

Nuclear 4 4 0      0 <0% to 6% 1975-1993 

Wind  (on-shore) 35 29 6  -3% to 32%  10% to 23.8% 1980-2010 

Solar PV 23 22 1  10% to 53% 10% 1959-2001 

BioPower 

Biomass production 4 4 0  12% to 45% 1971-2006 

BioPower generation 7 7 0  0% to 24% 1976-2005 

Geothermal power 3 0 0 1980-2005 

Hydropower 3 0 2  0.5% to 11.4%  2.6% to 20.6% 1980-2001 
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Conclusions about Learning Rates 

• Historical experience indicates that the real cost of most 
power generation technologies has declined over time. 

• Most analytical models of such “learning” relate changes in 
the unit capital cost of a technology to cumulative installed 
capacity in a region (accounting for assumed “spillover” 
effects). Some models relate the unit cost of generation to 
cumulative electricity production. 

• Our literature review reveals a wide range in the learning 
rates from these “one-factor” models.  In general we found: 

 Largest rates are for renewable energy sources (esp. wind and PV)  

 Smaller learning rates for fossil fuel plant types  

 Mostly negative rates for existing nuclear plants 
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Learning Rate Conclusions (con’t.)  

• More complex models also have been proposed to explain 
the “learning” phenomenon in terms of additional factors, 
such as expenditures on R&D 

• Alternative formulations of one-factor models also have 
been proposed to more realistically model the “shape” of 
historical experience for some power plant technologies 
(e.g., an S-shaped learning curve). 

• In general, data limitations severely limit the ability to test 
and validate alternative models except in limited situations 

• Given the large uncertainties, energy-economic models 
used for planning and policy analysis should explore a wide 
range of cost projection models to seek robust conclusions 

 



Endogenous learning in 

large-scale energy models 
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We Prepared Brief Reviews of  
 Seven Energy-Economic Models 

Model MESSAGE 

Modeling Type Optimization 

Geographic Scope Global 

Data Sources Rao, Keppo, and Riahi (Rao et al. 2006) 

Type of learning 
Default is exogenous (AEEI). Endogenous learning - single factor and constant learning rate is applied in some 

studies 

Technology 

representation/details 

A total of 18 technologies are assumed to have ETL. Learning rates range from 0-15%. Exogenous learning rates 

of 3-5% are assumed according to the B2 scenario for the other technologies.  

Cluster learning 

Spillover across tech. ‘technology clusters’ has been applied in several modeling approaches (Seebregts et al. 

(Seebregts et al. 2000); Riahi et al. (Riahi et al. 2005)). Technological spillovers can occur within a cluster (for 

example: carbon capture technologies, centralized and decentralized solar PV) but not from outside the cluster 

(for example: improvements in the semi-conductor industry).  

Spillover 

Spillover across regions. The learning process for technology improvements is assumed to take place on a global 

scale. Although this might not necessarily be consistent with the existence of trade barriers, regional economic 

blocks or the importance of localized learning 

MACRO 

MESSAGE and MACRO are linked iteratively to include the impact of policies on energy costs, GDP and on 

energy demand. MACRO, a top-down macroeconomic equilibrium model captures capital stock, available labor, 

and energy inputs determine the total output of an economy according to a nested constant elasticity of 

substitution (CES) production function. The linking of a bottom-up technology-rich model and a top-down 

macroeconomic model results in a fully consistent evolution of energy demand quantities, prices, and 

macroeconomic indicators (such as GDP, investments and savings).  

Key insights 

1. The existence of technological learning while reducing overall energy system costs becomes particularly 

important in the context of a long-term climate policy. 2. Spillovers across technologies and regions due to 

learning results in increased upfront investments and hence lower costs of carbon free technologies, thus resulting 

in technology deployment and emissions reductions, especially in developing countries.3. Learning and spillover 

effects can lead to technologically advanced cost-effective global energy transition pathways. 4. Earlier studies 

using the MESSAGE model (Roehrl and Riahi (Roehrl & Riahi 2000); Nakicenovic and Riahi (Nakicenovic & 

Riahi 2001)) have shown that alternative parameterizations of technological change have significant implications 

for the technology portfolio as well as associated costs. 
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… plus a 
summary of 

an IPCC 
review of 

global top-
down models 

with 
endogenous 

learning  
(17 studies) 

Study Model 
ETC 

channel 

Number of 

production 

sectors 

Number 

of 

regions 

Major results  

(impact of ETC) 
Comments 

Focus of 

analysis 

Bosetti et 
al., 2006 

  

FEEM-
RICE 

  

LBD 
  

1  8  An index of energy 

technological change 

increases elasticity of 

substitution. Learning-by-

doing in abatement and 

R&D investments raise the 

index. Energy technological 

change explicitly decreases 

carbon intensity. 

 
  

Experimen
tal model 

exploring 
high 
inertia. 
  

Crassous et 
al., 2006 

  

IMACLI
M-R 

GCE 
  

R&D 
and LBD 

  

1  5  Cumulative investments 

drive energy efficiency. 

Fuel prices drive energy 

efficiency in transportation 

and residential sector. 

Learning curves for energy 

technologies (electricity 

generation). 

Endogenou
s labour 

productivit
y, capital 
deepening. 
  

 
  

Edenhofer 
et al., 2006 
  

MIND 
Optimal 
growth 
  

LBD 
  

1  1  R&D investments improve 

energy efficiency. Factor 

substitution in a constant-

elasticity-of-substitution 

(CES) production function. 

Carbon-free energy from 

backstop technologies 

(renewables) and CCS. 

Learning-by-doing for 

renewable energy. R&D 

investments in labour 

productivity. Learning-by-

doing in resource extraction 

  

 
  

 
  

Gerlagh, 
2006 
  

DEMET
ER-1 
CCS 
  

LBD 
  

1  1  Factor substitution in CES 

production. Carbon-free 

energy from renewables and 

CCS. Learning-by-doing for 

both and for fossil fuels. 

 
  

 
  

Masui et al., 

2006 
  

AIM/Dy

namic - 
Global 
  

R&D 

  

9  6  Factor substitution in CES 

production. Investments in 

energy conservation capital 

increase energy efficiency 

for coal, oil, gas and 

electricity. Carbon-free 

energy from backstop 

technology 

(nuclear/renewables). 

  

 

  

Focus on 

energy 
efficiency 
with 
limited 
supply-side 
substitutio
n. 
  

Popp, 2006 
  

ENTICE
-BR 
  

R&D 
  

1  1  Factor substitution in Cobb-

Douglas production. R&D 

investments in energy 

efficiency knowledge stock. 

Carbon-free energy from 

generic backstop 

technology 

R&D 
investment
s lower 
price of 
energy 
from 
backstop 

technology. 

 
  

Rao et al., 
2006 
  

MESSA
GE/MA
CRO 
CGE 
  

LBD 
  

1  11  Carbon-free energy from 

backstop technologies 

(renewables, carbon 

scrubbing & sequestration). 

Learning curves for 

electricity generation and 

renewable hydrogen 

production 

Factor 
substitution 
in CES 
production 
in 
MACRO. 
  

 
  

Barker et 

al., 2006 
  

E3MG, 

econome
tric 
  

LBD and 

R&D 
  

41  20  Cumulative investments and 

R&D spending determine 

energy demand via a 

technology index. Learning 

Econometri

c model. 
Investment
s beyond 

Long-term 

costs of 
stabilizatio
n 
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Endogenous Learning Rates (%) in  
Several Bottom-Up Energy Models 

 Technology 

(a) One-factor learning curves  (b) Two-factor learning curves  

ERIS  MARKAL  

MERGE

-ETL  MESSAGE  ERIS  MERGE-ETL  

                                                                             Learning Mode: LBD  LBR  LBD  LBR  

Advanced coal  5  6  6  7  11  5  6  4  

NG combined cycle  10  11  11  15  24  2  11  1  

New nuclear  5  4  4  7  4  2  4  2  

Fuel cell  18  13  19  -  19  11  19  11  

Wind power  8  11  12  15  16  7  12  6  

Solar PV  18  19  19  28  25  10  19  10  

Source: IPCC (2007) LBD= learning by doing;  LBR= learning by researching 
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Learning Rates for New Generation 
Components in NEMS 

Source: EIA (2012) 
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Conclusions from Energy Models 
with Endogenous Learning 

•  Endogenous technological learning tends to reduce overall 
energy system costs and becomes particularly important in the 
context of a long-term climate policy  

• Endogenous learning results in increased upfront investment 
costs, but lowers the overall costs of carbon-free technologies, 
resulting in greater technology deployment and emissions 
reductions, especially in developing countries. 

• Spillovers across technologies and regions can lead to more 
cost-effective global energy transition pathways.  

• Alternative parameterizations of technological change can have 
significant implications for the technology portfolio as well as 
associated costs. 



Remaining tasks 
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Work in Progress 

• Finalize the literature review (Phase I) report 

• Analyze sample cost trajectories and overall 
results from REGEN 

• Suggest alternative cost trajectories based on 
learning models, and assess their impact on 
key results from REGEN 

• Prepare a brief Phase II report including 
recommendations for future work 



Thank You 
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