Problem 1 (20 points)

Given a piezometric surface with a regional slope of $7m/km$, calculate the natural rate of groundwater discharge (flux) through a confined aquifer with transmissivity $T = 0.002m^2/sec$.

Problem 2 (20 points)

Three piezometers are located $1000m$ apart in the same horizontal aquifer. Piezometer A is due south of piezometer B and piezometer C is to the east of the line AB. The surface elevations of A, B, and C are 95, 110, and 135m, respectively. The depth to water in A is 5m, in B is 30m, and in C is 35m. Determine the direction of groundwater flow through the triangle ABC and calculate hydraulic gradient.

Problem 3 (20 points)

Show that the fluid potential $\Phi = gz + p/\rho$ is an energy term, by carrying out a dimensionless analysis.

Problem 4 (20 points)

Find the constants of integration a_1 and a_2 in (2.58) and derive (2.60).

Problem 5 (20 points)

Derive the expression for Darcy’s flux (2.63) from (2.60).