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On-chip vacuum microtriode using carbon nanotube field emitters
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We show a fully integrated, on-chip, vacuum microtriode fabricated via silicon micromachining
processes using carbon nanotubes as field emitters. The triode is constructed laterally on a silicon
surface using microelectromechanical systefEMS) design and fabrication principles. The
technique incorporates high-performance nanomaterials in a MEMS design with mature solid-state
fabrication technology to create miniaturized, on-chip power amplifying vacuum devices, which
could have important and far-reaching scientific and technological implication20@ American
Institute of Physics.
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Microwave power tube amplifiers are compact and effi- ~ We report here a method for fabricating fully integrated,
cient for many high-power and high-frequency applications.on-chip, vacuum microtriodes using carbon nanotubes as
They are the amplifier of choice for radar, electronic warfarefield emitters via silicon micromachining processes. In con-
and space-based communications. The use of cold cathod&rast to the conventional vertical structures based on Spindt
in vacuum devices further promises to bring together the bestEAS’ or metal nanopillar cathod¥s that involve
features of both vacuum tubés.g., high powerand solid- multilayer deposition and precision alignment, our triodes
state power transistor®.g., long lifetime and miniaturiza- are constructed laterally on a silicon surface using microelec-
tion). Cold cathode devices can be turned on instantaneouslyromechanical system®EMS) design and fabrication prin-
without a tedious warm-up period. They can also be operatediples. This approach offers greater flexibility in designing
more efficiently because of the elimination of heating powersophisticated microwave devices and circuitries, employs
and the possible incorporation of depressed collectors in theimpler, more reliable and more precise fabrication pro-
tube to recycle the kinetic energy of the electron beam backesses, and produces completely integrated structures.
to the power supply. Further, in the absence of thermal dis- Our microtriodes were fabricated using a three-layer
tortions from the hot cathodes, the grid can now be placegolycrystalline silicon micromaching process on a silicon ni-
very close to the cathode.g.,<10 um), enabling high fre-  tride coated silicon substrat&The triode structure was cho-
quency(e.g.,>10 GH2 and low control voltagde.g., 50— sen because, despite its simple device geometry, its charac-
100 V) operation. terization can be easily parameterized and its behavior can

Over the years, there have been considerable effortgrovide important insight into the design and performance of
spent in building cold cathode microwave power tubemore sophisticated devices. The triode here is a micrometer-
amplifiers! ™12 All devices have been based on Spindt-typescale version of a conventional vacuum triode, consisting of
field emitter array(FEA) cathodes as the electron source.a cathode, a grid, and an anode. As shown in Fig), 2ach
Traveling wave tubes operating at 10 GHz with molybdenumelectrode is made of a hinged polysilicon panel that can be
FEAs emitting at a current density of 50 A/érfor a period  rotated and locked into position, once the panel is released
of 5000 h(at 1% duty cycle have been demonstratéd™® by etching away the oxide underneath. Well-aligned carbon
However, density modulation at microwave frequenciesnanotubes were selectively grown on the cathode region, as
through gated emission has proven to be difficult due to inshown in Fig. 1b), by first depositing a thin, nanotube-
adequate emission stability and reliability of the FEA cath-nucleating catalyst layer of irof60 A) through a shadow
odes. As a result, continuous operation of beam tube devicenask, and then growing the nanotubes in a microwave
has not been possible, and no practically useful triodes havislasma of ammonia/acetylene mixture at 750(f@ details
been reported. of nanotube deposition, see Refs. 20 angl Zhe structure

Carbon nanotubes have recently emerged as promisingas then assembled by rotating the electrode panels and
field emitters that can emit large current densities at relatocking them into the upright positions, as shown in Fig.
tively low electric fields* They are composed of cylindri- 1(c). This assembly was done under a microscope using a
cally arranged graphitic sheets with diameters in the range ahechanical microprobe. However, various self-assembly
1-30 nm and length/diameter aspect ratios greater thagchniques could be used to achieve better manufacturability
1000* Of particular interest is the capability of nanotube for future deviced? The carbon nanotubes grown here were
emitters to stably deliver very high emission currents, as inmultiwalled and highly oriented, with diameters ranging
dividual nanotubes can emit up tquA'® and nanotube films ~ from 20-50 nm. The nanotube length was determined by
can generate current densities in excess of 4 A/tm controlling the growth time(typical growth rates were
~10 um in length per minutg which, in turn, controlled the

aAuthor to whom all correspondence should be addressed:; Electronic maiﬁPaCir_‘g bet\’_"een the cathode and g&dd hence th_e emis-
wzhu@agere.com sion field. Figure 2 shows a scanning electron microscopy
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10-20pm | # 100-200pum| grid voltage with the anode held at 100 V. The inset is a Fowler—Nordheim
—F R plot showing that the emission occurred at the grid voltage of 60 V, corre-
© sponding to an onset field of 6 M.
C

_ _ _ . _theinset in Fig. 3, indicates that the grid voltage required for
FIG. 1. A flow diagram illustrating the fabrication procedure of our micro- e .
triode. (@) Polysilicon electrode panels are etched and released on a silicoﬁIec’[mn_emISSIOn from the nanotube emitters was 60 V'. cor-
nitride coated Si substratetched oxide regions are not showtb) carbon  responding to an onset field of 6 Mh. The anode and grid
nanotubes are selectively grown on the cathode,(anthe electrodes pan-  currents were observed to follow each other closely, with a
els are rotated and locked into their upright positions to constitutealaterall)(:urrent ratio (,/1,) of roughly 4 for this particular device
built triode. LAy . L .
uitfriode tested. This ratio is expected to improve significantly if the
] ] } nanotubes were grown patterned on the cathode according to
(SEM) micrograph of a completely assembled microtriode,ihe grig geometry instead of the blank layer here. The total
with the inset showing the structural details of the cathodgymission current I, +1,) from this device was 13.3:A
and grid regions. The nanotgt_)es are seen as a blank patch @jch corresponded to a macroscopic emission current den-
the cathode about 5050 um* in area and 1Qum in length, sity of roughly 0.5 A/crd from the cathode.
leaving a 10um spacing between the cathode and the grid. ~ The transconductance of this triode was 23 at the
We have obtained the dc characteristics of the triode byy,ode current of 10.62A. It should be correspondingly
measuring how the anode curret) changes as a function mch higher if the total emission current can be increased.
of both the grid voltage \(y) and the anode voltageVt).  on a normalized basis with respect to the cathode area, our
Figure 3 presents the grid curreng), anode currentlG),  nymper(0.11 S/crd atl,=10.6xA) is less than half of that
and transcpnductancgrg= Ola/6Vg) varying with the grid  fom the thermionic triode (0.3 SIGn2* but can be im-
voltage while the anode voltage was held at 100 V. We obygyeq at higher current levels. If normalized by the emis-
s_erved fthat the gr_ld and anode currents increased exponegyy, current, our numbe(0.25 S/A is significantly better
tially with the grid voltage, as was expgcted from the than Spindt cathode-based structuresD(03 S/A). While it
Fowler—Nordheim emission tunneling the ?yUnder e~ s important to have a high transconductance for successful
verse hias conditions, no current was observed until eleCt”ﬁigh-frequency device operation, such a high transconduc-
breakdpwn of the insulating silicon nitride_layer occurred .attance is desirably achieved at relatively low emission cur-
approximately 130 V. The Fowler—Nordheim plot, shown in g5 and voltages in order to reduce the probability of emit-
ter failure due to overheating or arcing and to minimize the
heat dissipation at the anode. Because the fields required for
emission from nanotubes are low, our nanotube based triode
structure is likely to perform well in this regard.
Figure 4 shows the measured anode characteristic

A X CaihOde NN g~ IS curves. As noted earlier, electric breakdown occurred across
hinges \ @ the thin silicon nitride layer on the Si substrate at voltages
silicon-nitride H L above 130 V. As a result, data were collected only at anode
i d silicengnbsinic - voltages below 100 V, above which excessive leakage cur-
x rent through the substrate rendered meaningful current mea-
A : surements difficult. The internal anode resistand®, (
e =6V,/81,) was approximately 10 M at Vy=92V but

could be much higher if operating at the current saturation
regions(45 M() at V=86V and 65 M) atV,=80V). As
illustrated by the 10 M load line and assuming that the
device was operated at,=60 V andl ;=4 uA, a peak-to-

FIG. 2. An SEM micrograph of a completely assembled microtriode. The : : : _
bond pads for electrical contact are not shown. The metal strips lying on thgeak VOItage swing of 6V on the grld would induce a peak

substrate surface between the grid and anode are for charge reduction@-P€ak anode voltage change of 40 V, resulting in a voltage

electrons hit the surface. gain of 16.5 dB. Assuming that the load resistanBg) (is
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12 ture and materials withstood the high-temperature nanotube
— growth processing and the resulting device still demonstrated
§ 9 \. 10MQ v impressive dc power characteristics. Based on the dc data
:g already obtained, we will perform rf modeling and design
L 51 optimization on both the device and circuit levels and further
8 explore device structures that are more compatible with
o 3 P high-frequency operation. With the use of better breakdown-
B8 v resistant substrates and improved electrode designs, we ex-
< 0 Vg=80 pect to achieve transconductances of at least A80per

) . Vg=0-60V device, which would increase the output power and cutoff
0 25 50 75 100 frequency by two orders of magnitude. We will take advan-

tage of the MEMS design flexibility to add more functional-
ity into the device structure. More importantly, the powerful
FIG. 4. Anode current as a function of anode voltage at various grid volt-=COmMbination of nanomaterials with MEMS technology, as
ages. The dashed lines are fits to the data. The @ldad line is used to  demonstrated in this work, will likely stimulate further ad-
illustrate the voltage gain that can be achieved by this device. vances in creating new and unique devices useful for a vari-
ety of applications.
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. . ial support from the Office of Naval Research for this
(Py) with the power lost at the gird R;) as P,/Pq project.
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