Brus group experimental areas

1. Carbon Nanotube Excited States:
Two photon study of Excitons
Rayleigh Scattering for identification of single tubes
Short tubes in the interstellar medium?

2. Transition metal oxide nanocrystals and nanowires:
electric force microscopy
hydrothermal and organometallic synthesis
structural phase transitions

3. Local electromagnetic field enhancement around Ag
Nanocrystals
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History

Synthesis and self-assembly into solids
Electronic Structure and Luminescence
Optical Spectra of Single Nanocrystals
Charge State of Single Nanocrystals.
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What is a CdSe nanocrystal?

(CH,Cd + opopse —A3WC_,

TOP (PHRR)
TOPO (%P:O) ,J’J_/;m

fast injection

Capped with TOPO
mainly

- Organic molecules “cap’ the outer surface of core
semiconductor. They prevent aggregation, oxidation,
and stabilize nanoparticles in the solution. Most
important, they electronically isolate the particles and
passivate the surface states.
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Quantum size effects in the redox potentials, resonance
Raman spectra, and electronic spectra of CdS crystalilites

in aqueous solution

R. Rossetti, S. Nakahara, and L. E. Brus

Bell Laboratories, Murray Hill, New Jersey 07974
[Received 31 March 1983; accepted S May 1983)

We report observation of size effects in the excited
electronic properties of small, crystalline CdS parti-
cles. We also theoretically model the lea small
Size correction terms applicable to the photochemical
redox potentials and lowest exciton energy. Our experi-
ment involves controlled formation of CdS crystallites
in aqueous solution; the photophysics and surface redox
chemisiry of electrons e~ and holes /* in these colloidal
crystallites has been of recent interest.'=*

Transmission electron microscope examination of
particles from a freshly prepared colloid shows a nar-
row size distribution.” A typical particle diameter is
«35 A, which corresponds to about six unit cells. The
mass weighted average diameter d is ~45 A. The par-
ticles are crystalline (cubie CdS), with moderate dif-
fraction ring broadening due to small crystallite size.

In colloidal solution, thermodynamics favors growth of
larger crystallites at the expense of smaller ones. We
observe that, if these colloids “age” for >~ 1 day at pH 3,
the size distribution becomes broader with d= 125 A,
Ontheaverage, 21 small crystallites dissolve and recrys-
tallize onto one larger “seed” crystallite. The colloid
remains transparent without CdS precipitation as it ages.
The crystal structure is mixed cubic and hexagonal after
aging; the hexagonal phase is thermodynamically more
stable.

Resonance Raman (RR) spectroscopy® in principle
allows an in sifu vibrational characterization despite
the low crystallite concentration ~2x10* M in fresh
colloids. The 416 nm RR spectrum in Fig. L shows the
LO (longitudinal optical) phonon at 305 em™' and a weaker
pvertone near 605 cm™'. These CdS peaks are superim-
posed on nearly continuous water Raman scattering.

e - h* recombination luminescence has been largely
quenched by addition of ~10™ M benzoquinone.® At 395,
448, and 460 nm similar spectra are observed. To the
red (480, 503, and 532 nm) and to the blue (355 and 266
nm), the CdS RR spectra are far weaker and not de-
tected.

To our knowledge these are the smallest isolated
crystallites that have been examined by Raman spec-

troscopy.®!® The LO peak occurs within a couple of
em™ of the bulk CdS frequency. In Fig. 1 the low fre-
quency wing, in the region of expected surface mode
maxima, '! is slightly stronger than the high frequency
wing. In other fresh colloids, the LO peak is more
symmetrical. Shifts and surface mode maxima have
been reported for small crystalline grains in Si

films. %!

In aged colloids the CdS RR excitation spectrum
changes markedly. RR scattering at 395, 416, and 448
nm is not detectable, with the cross section per unit
mass decreasing by at least a factor of 10. Recall that
there is no loss of CdS mass during aging; mass shifts
from smaller to larger crystallites. CdS RR scattering
is detected in the red shifted and narrower spectral
range 463-480 nm. The spectra are similar to those in
Fig. 1, with an LO peak decrease of >3 cm™ and a
slight narrowing.
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Synthesis 1986  Steigerwald etal, JACS 110, 3046 (1988)
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Synthesis 1988 Bawendi etal J. Chem. Phys. 91, 7282 (1989)
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Chemical synthesis of CdSe nanocrystals

Argon gas at little above
Thermocouple ambient pressure

w.

- Narrow size distribution (~5%)
IS obtained by the fast injection
of the chemical reagents into the
flask at high temperature (~ 350

°C).

- The precursors are prepared in
the glove box to avoid oxygen
and water.

Semiconductor: CdSe, CdTe, PbSe, etc.
Metal: PtFe



TEM of cubic PbSe nanocrystals

TEM images of PbSe quantum cubes after size selection
(reaction temperature 215°C),
size ~12 nm

Change of shape from spheric to cubic in the size regime of
8to11 nm

Chris Murray, Wolfgang Gaschler, Franz Redl, IBM-Columbia



Low Temperature oganometallic Synthesis of TiO,

i
Ti + OS(CHy),
-
120°C
23 C OPR,
ligand
OPR,
ligand

Jing Tang, Franz Redl, Yimei Zhu, Theo Siegrist, Louis E. Brus and
Michael L. Steigerwald, "A Low-Temperature Synthesis of TiO2
Nanoparticles" , Nano Letters 5, 543-548 (2005).



Growth of wires and exotic shapes
With junctions between different materials

D. Milliron etal, Nature 430, 190 (2004) — Alivisatos Group



3D solid structures

Elena Shevchenko
O’Brien — Murray
Columbia-1IBM
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Bimodal superlattice of 11 nm magnetic Fe,O3 NCs and
semiconducting 5 nm PbSe NCs

Redl, Cho, Murray, O'Brien Nature 423, 968 (2003)

observed plane
of form {100},

observed
plane of form {110},

a' |
6 nm PbSe-NC - .

| . 11 nm y-Fe,0,-NC ' cubic subunit

AB..- unit cell
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CdSe Size Dependent Absorbance
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Size tunable luminescence
Narrow emission band

High Quantum Yield Luminescence
More stable than dye molecules
Possible use in biological imaging

(Bawendi Group)
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ZnS surface shell layer “insulates” the
luminescent CdSe core

high quantum yield and photostability

7nS CdS

v ~0.2ev

4 ~05eV

Spatial Coordinate
B. O. Dabbousi, et al. (1997)



Biological Imaging Applications

Surface Stabilization & Biomolecule Conjugation

octylamine modified
poly-acrylic acid

Streptavidin

TOPO coated core-shell adsorption

Q Dot Corporation
www.qdots.com

Published in Nature Biotechnology Online



Imaging Mouse Intestine

A mouse intestinal section visualized using fluorescent Qdot nanocrystal conjugates. Actin
was labeled with a mouse anti-actin monoclonal antibody and visualized using red-
fluorescent Qdot 655 goat F(ab')2 anti-mouse 1gG ( : ). Laminin was
labeled with a rabbit anti-laminin polyclonal antibody and visualized using green-fluorescent
Qdot 525 goat F(ab")2 anti—rabbit 1gG ( ). Nuclei were stained with blue-
fluorescent Hoechst 33342 ( : : ). Image contributed by Thomas
Deerinck and Mark Ellisman, The National Center for Microscopy and Imaging Research,
San Diego,
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Fig. 2. Observation of individual microtubule
motor stepsin a live cell with endocytosed quantum
dots. (A) Live A549 cell with QD-containing en-
dosomes (bright dots), many of which undergo
active transport by kinesin (outward movements)
or dynein (inward movements, white arrow). (B)
Displacement trajectory of a outward-going (micro-
tubule plus-end) endosome, exhibiting stepwise
movements of the underlying motor (likely
kinesin). Green, raw data; red, filtered data. (C)
Pairwise distance histogram of the filtered dis-
placement trace in (B), with an 8-nm spacing
between adjacent peaks.

Sunney Xie etal, Science 312, 228 (2006)



Simple Model for Electronic Structure:
Quantum Size Effect

E i~ Electron Momentum

\ | /lC mv=hk=h/A

[ electron wavelength A
' quantized in particle:

\ / k~n/R; n=1,2.

o—© r—eo—o
./ \.

e Energy of HOMO-LUMO Blue Shifted from
bulk band gap

E(K) ~ E, + n?h?/(8m,R2)+ nzh2/(8m, R?)

* Optical Spectra are Discrete and Size Dependent

» Model uses known bulk band structure, and ignores
 bonding reconstruction on surfaces



Quantum Size Effect including Electrostatics
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Failure of Quantum Model in Silicon Nanocrystals:

Why does an H passivated 1.3 nm silicon nanocrystal
emit in the blue, but an 1.3 nm oxide shell passivated
nanocrystal emit in the red?
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ADb Initio Electronic Structure Calculation

Surface Bonding and Geometrical Optimization
Independent of bulk band structure
Molecular Orbitals extend over entire nanocrystal

Problem: too many atoms

Slater
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HOMO & LUMO of H-passivated Nanocrystals

Si35H36 LUMO Si66H64 LUMO Si87H76 LUMO

Si87H76 HOMO

As sizes Increases, a 1S orbital with nodes on
the surface Is formed - expected behavior

Zhou, Friesner, Brus Nanoletters 3, 163 (2003)
JACS 125, 15599 (2003)



Orbital Energy(Hartree)

Molecular Orbitals of Si66 Species
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Oxide passivation lowers band gap by 1.5 eV
LUMO moves down
HOMO moves up

Fermi level unchanged; hardness decreases



Gap (eV)

Si Nanocrystal Band Gap
Depends Upon Surface Passivation
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Quantum size effect model works well when
electronegativity of capping atom matches that
of lattice atom.



CdSe Size Dependent Absorbance

Abkaarbance
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How can we observe the band gap luminescence
of single nanocrystals?

Nanocrystals have several thousand atoms
Size distribution ca. 5% in diameter

Each nanocrystal is unique

Spectra average over distributions

Experimental Setup: Far-Field [llumination
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Betzig, Trautman (Bell Labs):
Confocal Scanned Stage Luminescence Spectrometer

Macklin etal, Science 272, 255 (1996)
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Schematic Blinking Mechanism:
Photoionization and Re-neutralization
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Dark State: lonized Nanocrystal with hole inside
Bright State: Neutral Nanocrystal



Direct Measurement of Electric Field Due to One
Ionized Nanocrystal

% EFM Scan
N I

vdcﬂr ae S111 (i

Topography Sca@

XyZ-piezo

Electric Force Microscopy Invention:
Wickramasinghe IBM
Martin etal, Appl. Phys. Lett. 52, 1103 (1988)E



Can we measure a single charge on a single nanocrystal?

Electric Force Microscopy EFM

Oscillating Capacitor

Asin(w,t) ( \ Viip = Ve *+Vac Sin(at)
e O

|r ™

Electrostatic Force E - QQ
Ul 472

2
Energy Stored in a Capacitor U= 2CV2 ;%

__du__d(1Q*)_1@?dC_1dC,,,
B dz S 2C%dz 2dz
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When a voltage is applied to the tip it feels a sum of electrostatic and
capacitative forces. If there are static charges on the surface, image
charges are induced in the metal tip.
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CdSe/ZnS Charge Blinking on
Graphite

Krauss etal J. Phys. Chem. 2001, B105, 1725

1o Charge image 2 Polarizability image

400 nm

e [lluminated with 20 W/cm? at 442 nm

*Direct observation of Charge Blinking provides evidence for
photoionization mechanism of Luminescence Blinking
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