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Abstract

The evolution equations of the volume fractions of deformation twins are obtained in this article by using the theory of inclusions in

micromechanics and analyzing the Gibbs free energy and dissipation of a system. The evolution process of the volume fractions of twins

is got by using the Runge–Kutta method in this article. The computational results of the evolution equations (the critical twinning stress

and the families of twins appeared under different loading conditions) are consistent with the experiment results.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Twinning is an important mode of plastic deformation in
FCC metals of low stacking-fault energy (e.g. a-brass,
MP35N) and most of HCP metals (e.g. a-Ti, Zr). Recently,
more and more researchers have realized that twinning has
important influence on the plastic deformation of these
metals [1–3]. Ayman et al. [3] associated the three distinct
stages of strain hardening of a-Ti deformed under uniaxial
compression with deformation twinning. A mesoscopic
constitutive model of Hadfield steel was proposed by
Karaman et al. [4], based on the relationship between the
resistance of the motion of dislocations and the volume
fractions of deformation twins. Researchers have also
realized that deformation twinning plays an important role
in the texture evolution of these metals. The influence of
deformation twinning on texture evolution of Zr has been
simulated by Tome et al. [5]. In order to learn more about
the twinning, Yoo and others [6,7] discussed the elastic
energy caused by deformation twins by using the theory of
inclusions and proposed the possible reasons of the
appearance of different types of deformation twins at
front matter r 2007 Elsevier B.V. All rights reserved.
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different temperature under a certain mode of load.
Lebensohn and Tome [8] and Meyers et al. [9] obtained
the relationship between the critical stress of deformation
twinning and the shapes and sizes of twins by using theory
of inclusions within the scope of thermomechanics.
However, they have not got the critical stress of deforma-
tion twinning and the evolution of deformation twinning
after the appearance of twins. In this paper, we try to
establish the evolution equations of the volume fractions of
deformation twins in metals by analyzing the Gibbs free
energy of a system and using the theory of inclusions in
micromechanics.
2. Modeling the evolution of the volume fractions

of deformation twins

2.1. Representative volume element (RVE)

In Fig. 1, the blank represents the plastic–elastic matrix
and the shadow represents twins, which are regarded as
elastic inclusions because of their small thickness [10]. The
eigenstrain of the inclusions could be deduced from small
strain analysis as follows:

2t
ij ¼

1
2
sðnimj þ njmiÞ, (1)
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Fig. 1. Representative volume element.
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where s denotes the magnitude of twinning shear, n, m

denote the direction of twinning shear and the normal
direction of the shear plane, respectively.

A large number of experiments showed that twins
often appear in lenticular shapes. For simplicity, the
shape of twins is assumed to satisfy the equation of
ellipsoids

x2
1=a2 þ x2

2=a2 þ x2
3=ðmaÞ2 ¼ 1 ðm51Þ: (2)

Short axis is perpendicular to the shear plane and
the long axis is parallel to the direction of twinning
shear.

2.2. Thermomechanical analysis of the evolution of the

deformation twins

The complementary free energy of a system is defined by

c S; f i

� �
¼ � f S; f i

� �
� S : E

� �
, (3)

where fi denotes the volume fractions of deformation twins
of the ith type.

P
, E denote the volume averaged stress and

volume averaged strain, respectively,

S ¼
1

V

Z
v

s dV ; E ¼
1

V

Z
v

2 dV . (4)

f denotes the Helmholtz free energy of the system,

f S; f i

� �
¼W elastic þ Ginterface þW chem, (5)

where Welastic denotes the elastic energy of the element,
Ginterface denotes the interface energy of twins and Wchem

denotes the chemical free energy of the system.

2.2.1. Elastic energy of the element

The elastic energy of the RVE is [11]

W elastic ¼
1

2
S : M : S�

XN

i¼1

1

2vi

Z
vi

hsi : 2t dvi, (6)

where M denotes the compliant tensor of matrix, vi denotes
the volume of the deformation twins of ith type, N denotes
the number of the type of twins.

Under load 2p is assumed to be the homogeneous
plastic strain of matrix. According to the Mori–Tanaka
self-consistent theory, the volume averaged stress could
be obtained

hsii ¼ L : ðSi � IÞ : ð2t
i � 2pÞ

� L :
XN

s¼1

ðSs � IÞ : ð2t
s � 2pÞf s, ð7Þ

where Si denotes the Eshelby tensor of the twins of
ith type.

W elastic ¼
1

2
S : M : S

�
1

2

XN

i¼1

f ið2
t
i � 2pÞ : L : ðSs � IÞ : 2t

i

þ
1

2

XN

i¼1

XN

s¼1

f if sð2
t
i � 2pÞ : L : ðSs � IÞ : 2t

s; ð8Þ

where the third term reflects the interaction of different
types of twins [11].

2.2.2. Complementary free energy of the element

According to Eq. (3), the volume averaged stress and
volume averaged strain could be expressed as

S ¼
XN

i¼1

f ihsivi
þ ð1� f Þhsivm ; f ¼

XN

i¼1

f i, (9)

E ¼ h2eiv þ h2
piv ¼M : Sþ

XN

i¼1

f i2
t
i . (10)

Because the time needed for a twin plate growing from
nucleation the ultimate size is much shorter than the
characteristic time of the increase of the volume fractions
of twins [12], the increase of the volume fractions of twins
could be simply considered as the increase of the numbers
of the twin plates, and the interface energy of twins per
volume can be expressed as

Ginterface �
XN

i¼1

3gi

2aimi

f i, (11)

where ai is a constant, which reflects the size of a twin
plate.
Substituting Eqs. (8)–(11) into Eq. (3), we obtain

C S; f i

� �
¼

1

2
S : M : S

þ S :
XN

i¼1

2t
i f i þ 1�

XN

i¼1

f i

 !
2p

" #

þ
1

2

XN

i¼1

f ið2
t
i � 2pÞ : L : ðSi � IÞ : 2t

i

�
1

2

XN

i¼1

XN

s¼1

f if sð2
t
i � 2pÞ : L : ðSs � IÞ : 2t

s

�
XN

i¼1

3gi

2aimi

f i �W chem. ð12Þ
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2.2.3. Evolution of volume fractions of deformation twins

According to thermomechanical theory, the increase of
complementary free energy of a system is equal to dissi-
pative energy of the system

dcjS;T ¼ dWdX0. (13)

Based on the internal variable theory, the driving force
of twinning can be expressed as

ti ¼
q _Wd

q _f i

¼ S : ð2t
i � 2pÞ

þ
1

2
ð2t

i � 2pÞ : L : ðSi � IÞ : 2t
i

�
XN

s¼1

f sð2
t
s � 2pÞ : L : ðSs � IÞ : 2t

i �
3gi

2aimi

. ð14Þ

It is assumed in this article that when the driving force of
twining tiXtc, k _f i ¼ ðti � tcÞ i.e.

k
df i

dt
¼ S : ð2t

i � 2pÞ þ
1

2
ð2t

i � 2pÞ : L : ðSi � IÞ : 2t
i

�
XN

s¼1

f sð2
t
s � 2pÞ : L : ðSs � IÞ : 2t

i

�
3gi

2aimi

� tc when tiXtc. ð15Þ
Table 1

Parameters of deformation twins of titanium adopted in this work

Twins

family

Type n1 n2 n3 m1

ð1 0 1̄ 2Þ 1 �0.737 0 0.676 0.676

2 �0.369 �0.639 0.676 0.338

3 0.369 �0.639 0.676 �0.338

4 0.737 0 0.676 �0.676

5 0.369 0.639 0.676 �0.338

6 �0.369 0.639 0.676 0.338

ð2 1̄ 1̄ 2Þ 7 0.462 �0.267 �0.846 0.733

8 0.462 0.267 �0.846 0.733

9 �0.463 0.267 �0.846 �0.733

10 �0.462 �0.267 �0.846 �0.733

11 0 0.533 �0.846 0

12 0 �0.533 �0.846 0

ð1 1 2̄ 1Þ 13 �0.260 0.150 0.954 0.826

14 �0.260 �0.150 0.954 0.826

15 0.260 �0.150 0.954 �0.826

16 0.260 0.150 0.954 �0.826

17 0 �0.301 0.954 0

18 0 0.301 0.954 0

ð1 0 1̄ 1Þ 19 0.479 0 �0.878 0.878

20 0.240 0.415 �0.878 0.439

21 �0.240 0.415 �0.878 �0.439

22 �0.479 0 �0.878 �0.888

23 �0.240 �0.415 �0.878 �0.439

24 0.240 �0.415 �0.878 0.439
A large number of experiment results show that the de-
twinning does not occur during plastic deformation, i.e.

df i

dt
X0 (16)

and fi should also satisfy

f iX0;
XN

i¼1

f ip1. (17)

Eqs. (15)–(17) are the equations of evolution of volume
fractions of deformation twins.
When (dfi/dt)=0 (the driving force of twinning ti reach

the critical value tc), Eq. (15) can be reduced to the
equations of the critical twinning stress:

S : ð2t
i � 2pÞ þ

1

2
ð2t

i � 2pÞ : L : ðSi � IÞ : 2t
i

�
XN

s¼1

f sð2
t
s � 2pÞ : L : ðSs � IÞ : 2t

i

�
3gi

2aimi

� tc ¼ 0. ð18Þ

Based on the shape parameters, directions, magnitude of
shear and interface energy of twins and the elastic
constants of materials, the equations of evolution of
volume fractions of deformation twins could be solved by
m2 m3 S Interface energy of

twins (mJ/m2)

0 0.737 0.174 292

0.585 0.737

0.585 0.737

0 0.737

�0.585 0.737

�0.585 0.737

�0.423 0.533 0.219 266

0.423 0.533

0.423 0.533

�0.423 0.533

0.846 0.533

�0.846 0.533

�0.477 0.300 0.63 212

0.477 0.300

0.477 0.300

�0.477 0.300

0.954 0.300

�0.954 0.300

0 0.479 0.099 765

0.760 0.479

0.760 0.479

0 0.479

�0.760 0.479

�0.760 0.479
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using proper numerical methods, and the evolution process
could also be obtained.

3. Numerical results of the evolution of the volume fractions

of deformation twins in single crystal a-titanium

The Runge–Kutta method is adopted to solve the
evolution equations in this article. The magnitude of
twinning shear, s, and the direction of twinning shear and
the normal direction of the plane of shear, n, m could be
obtained from Ref. [8], see Table 1. The interface energy of
deformation twins of titanium calculated by Yoo and Lee
[7] is adopted in this article; also see Table 1.

According to three different tensile directions: (0.184,
0.0351, 0.982), (0.625, 0.0245, 0.780), (0.470, 0.169, 0.866),
the numerical results of the evolution equations (the evolu-
tion process of deformation twins in pure titanium) is
obtained. The numerical results is shown in Figs. 2(a)–(c)
and Table 2, and the corresponding experimental results
cited from Ref. [13] is also shown in Figs. 2(a)–(c) and
Table 2.

Figs. 2(a)–(c) and Table 2 indicate:
(a)
 When XB ¼ 781 (XB is the angle between the direction
of load and C-axis of single crystal), the computed
critical twinning stress is close to the experiment results
got by Akhtar [13] (Table 2). When stress is lower than
400Mpa, the type of deformation twins in titanium is
mostly ð1 0 1̄ 2Þ (Fig. 2(a)), which is also consistent with
experiment results.
(b)
 When XB ¼ 471, the computed critical twinning stress
is also close to the experiment results got by Akhtar
[13] (Table 2). And, the type of deformation twins is
ð1 0 1̄ 2Þ and ð1 1 2̄ 1Þ (Fig. 2(b)), and the volume
fractions of ð1 1 2̄ 1Þ is more than those of ð1 0 1̄ 2Þ all
the time, which is consistent with the experiment results
that the ð1 1 2̄ 1Þ twin is the primary type of deforma-
tion twin when XB ¼ 471.
(c)
Fig. 2. Evolution of the volume fractions of deformation twins under

tensile load at various directions. (a) XB ¼ 781; (b) XB ¼ 471; (c) XB ¼ 601.
When XB ¼ 601, the computed critical twinning stress
deviates from the experiment results got by Akhtar [13]
(Table 2). And the volume fractions of ð1 0 1̄ 2Þ twins
are almost equal to the volume fractions of ð1 1 2̄ 1Þall
the time (Fig. 2(c)), but when XB ¼ 601, ð1 1 2̄ 1Þ twins
were only observed at low temperature (78K) and
ð1 0 1̄ 2Þ twins are only observed at high temperature
(423K) in experiments. There are two possible reasons
about the divergence. Firstly, the influence of tempera-
ture on the interface energy of twins is neglected in this
article (the interface energy of twins adopted in this
article is computed by Yoo and Lee [7] at room
temperature). Secondly, the difference between the
nucleation stress of twining and the initial stress needed
to maintain the growth of the twins has not been taken
into consider in this model. Actually, however, in most
conditions, the nucleation stress, which is very hard to
be precisely measured, is little higher than the initial
stress needed to maintain the growth of the twins.
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Table 2

Predicted and observed critical twinning stress and twinning modes in titanium

Loading mode Direction of loads Experimental

critical twinning

stress (Mpa)

Types of twin observed

in experiments

Computational critical

twinning stress (Mpa)

Types of twin predicted

by computation

T

XB ¼ 781 (0.184, 0.0351, 0.982) 182 ð1 0 1̄ 2Þ 215 ð1 1 2̄ 1Þ

ð1 0 1̄ 2Þ

XB ¼ 471 (0.625, 0.0245, 0.780) 170 ð1 1 2̄ 1Þ 208 ð1 1 2̄ 1Þ

ð1 0 1̄ 2Þ

XB ¼ 601 (0.470, 0.169, 0.866) 390 ð1 0 1̄ 2Þ (78K) 170 (78K) ð1 0 1̄ 2Þ

ð1 1 2̄ 1Þ (423K) ð1 1 2̄ 1Þ

C

C-axis (0,0,1) – ð2 1̄ 1̄ 2Þ 180 ð2 1̄ 1̄ 2Þ

ð1 0 1̄ 0Þ (1,0,0) – ð1 0 1̄ 2Þ ð1 0 1̄ 1Þ

ð1 1 2̄ 1Þ 177 ð1 0 1̄ 2Þ

ð1 1 2̄ 1Þ

Notes: T—tension, C—compression.
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According to the experimental results in Ref. [13], the
initial stress needed to maintain the growth of the twins
is smaller than the nucleation stress. And the initial
stress is about 220Mpa, which is closer to the
computational results.
According to two different compression directions, (0 0 0 1)
and ð1 0 1̄ 0Þ, the evolution process of deformation
twins in pure titanium is also obtained in this article.
The numerical results is shown in Figs. 3(a) and (b)
and Table 2, and the corresponding experimental results
cited from Ref. [14] is also shown in Figs. 3(a) and (b) and
Table 2.

Fig. 3(a) and (b) and Table 2 indicate:
(a)
 When titanium single crystal was compressed along
C-axis, computational results show that the ð2 1̄ 1̄ 2Þ
and ð1 0 1̄ 0Þ twins would appear in titanium and
ð2 1̄ 1̄ 2Þ twins is the primary type of twins (Fig. 3(a)),
which is consistent with the experiment results obtained
by Paton and Backofen [14].
(b)
 When titanium single crystal was compressed along
ð1 0 1̄ 0Þ axis, computational results show that the
ð1 0 1̄ 2Þ and ð1 1 2̄ 1Þ twins would appear in titanium
(Fig. 3(b)), which is also consistent with the experiment
results got by Paton and Backofen [14].
Fig. 3. Evolution of the volume fractions of deformation twins under

compressive load at various directions. (a) C-axis; (b) ð1 0 1̄ 0Þ axis.
4. Conclusions

The evolution equations of the volume fractions of
deformation twins are obtained by using the theory
of inclusions and analyzing the Gibbs free energy of a
system. The numerical results of the evolution equations
(the critical twinning stress and the families of twins) are
consistent with experimental results, which demonstrate
the validity of the evolution equations in this article.
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