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Nonlinear oscillation of a dielectric elastomer
balloon
Jian Zhu, Shengqiang Cai and Zhigang Suo∗

Abstract

Much of the existing literature on dielectric elastomers has focused on quasi-static deformation. However, in some potential
applications, the elastomer deforms at high frequencies and undergoes nonlinear oscillation. While nonlinear oscillation has
been studied in many areas of science and engineering, we are unaware of any theoretical analysis of nonlinear oscillation
of dielectric elastomers. This paper reports a theoretical study of the dynamic behavior of a dielectric elastomer balloon
subject to a combination of pressure and voltage. When the pressure and voltage are static, the balloon may reach a state of
equilibrium. We determine the stability of the state of equilibrium, and calculate the natural frequency of the small-amplitude
oscillation around the state of equilibrium. We focus on the parametric responses of the dielectric elastomer balloon. When the
voltage is sinusoidal, the balloon resonates at multiple frequencies of excitation, giving rise to superharmonic, harmonic and
subharmonic responses. When the frequency of excitation varies continuously, the oscillating amplitude of the balloon may
jump, exhibiting hysteresis.
c© 2010 Society of Chemical Industry
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INTRODUCTION
Subject to a voltage through its thickness, a thin membrane
of a dielectric elastomer reduces in thickness and expands in
area. The strain of the membrane induced by the voltage can
be large, readily exceeding 100%. This and related phenomena
are being developed for applications in electromechanical
transducers.1 – 7 Much of the existing literature on dielectric
elastomers has focused on quasi-static deformation, where the
effect of inertia is negligible. In some potential applications,
however, elastomers deform at high frequencies, up to 50 kHz,
and function as vibration sources,8 high-speed pumps9 – 12 and
acoustic equipment.13,14

In a large-strain, high-frequency application, the elastomer may
undergo nonlinear oscillation. While nonlinear oscillation has been
studied in many areas of science and engineering,15,16 we are
unaware of any theoretical analysis of nonlinear oscillation of
dielectric elastomers. To explore the subject, this paper reports
a study of an idealized system: a dielectric elastomer balloon
of a spherical shape, subject to a combination of pressure and
voltage. Dielectric elastomer balloons have been studied as
pumps12 and loudspeakers,13 as well as elements of shell-like
actuators.17,18

The plan of this paper is as follows. The following section
derives the equation of motion using the method of virtual work.
The section after that describes the state of equilibrium when
the pressure and voltage are static. We then discuss the small-
amplitude oscillation around the state of equilibrium, and the
stability of the state of equilibrium against small perturbation.
The section after that studies parametric excitation, where the
pressure is static but the voltage is sinusoidal. Finally, we show
that, when the frequency of excitation is varied continuously,
the oscillating amplitude of the balloon can jump, exhibiting
hysteresis.

EQUATION OF MOTION
Figure 1 shows a spherical balloon of radius R and thickness H
in the undeformed state. The membrane of the balloon is a
dielectric elastomer, taken to be incompressible, of density ρ . The
membrane is coated on both faces with compliant electrodes. We
will neglect any stress in the electrodes, but may add the mass of
the electrodes to that of the membrane.

When the pressure inside the balloon exceeds the pressure
outside by p and the two electrodes are subject to a voltage �, the
balloon deforms to radius r and the two electrodes gain charges
+Q and −Q. Let λ be the stretch of the membrane, namely

λ = r

R
(1)

Let D be the electric displacement in the membrane, namely

D = Q

4π r2 (2)

The balloon is taken to deform under an isothermal condition,
and the fixed temperature will not be considered explicitly.
Consequently, the balloon is a thermodynamic system of two
independent variables, λ and D. We next formulate a model to
evolve this system in time t.

The thermodynamics of the dielectric elastomer is characterized
by the density of the Helmholtz free energy as a function of the
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Figure 1. Dielectric elastomer balloon deforms under a pressure and
a voltage.

two independent variables, W(λ, D). We will adopt the model of an
ideal dielectric elastomer.19 The model assumes that the elastomer
is a network of long and flexible polymers with a low density
of crosslinks, so that the crosslinks almost do not constrain the
process of polarization. Once the effect of crosslinks on polarization
is neglected, the dielectric behavior of the elastomer is liquid-
like, unaffected by deformation. Consequently, the free-energy
function of the dielectric elastomer is written as a sum of two
parts:

W(λ, D) = µ

2
(2λ2 + λ−4 − 3) + D2

2ε
(3)

The first part is the elastic energy, where µ is the shear modulus.
For simplicity, we use the neo-Hookean model to describe the
elasticity of the network; other models of elasticity may be used.
The second part in Eqn (3) is the dielectric energy, where ε is the
permittivity. For an ideal dielectric elastomer, the permittivity is
taken to be a constant independent of deformation.

The model of ideal dielectric elastomers has been used almost
exclusively in the literature to analyze devices. However, recent
experiments on VHB (an acrylic-based elastomer made by 3M), the
most studied dielectric elastomer, have shown that the permittivity
may vary by a factor of two when the elastomer undergoes large
deformation.18 See Zhao and Suo20 for a review of thermodynamic
models for dielectric elastomers. While the general considerations
in this paper are valid for arbitrary function W(λ, D), we will use the
function (3) in numerical calculations.

When the charge on the electrodes varies by δQ, the applied
voltage does work �δQ. When the radius of the balloon varies
by δr, the pressure does work 4π r2pδr, and the inertial force
does work −4πR2H ρ(d2r/dt2)δr. We neglect any viscous force.
Thermodynamics dictates that, for arbitrary variation of the system,
the variation of the free energy of the membrane should equal the
work done by the voltage, the pressure and the inertia, namely

4πR2HδW = �δQ + 4π r2pδr − 4πR2Hρ
d2r

dt2 δr (4)

Inserting Eqns (1) and (2) into Eqn (4), and recalling that the
balloon is a system of two independent variables, λ and D, we
obtain that

∂W(λ, D)

∂λ
= 2�Dλ

H
+ pR

H
λ2 − R2ρ

d2λ

dt2 (5)

∂W(λ, D)

∂D
= �

H
λ2 (6)

Equation (5) balances momentum and Eqn (6) enforces electros-
tatic equilibrium. For an ideal dielectric elastomer, Eqn (6) recovers
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Figure 2. Subject to a static pressure and voltage, the balloon may reach a
state of equilibrium. The pressure is plotted as a function of the equilibrium
stretch at several values of the voltage.

the liquid-like dielectric behavior, D = εE, where E is the electric
field.

Inserting Eqn (3) into Eqns (5) and (6), and eliminating D, we
obtain that

d2λ

dT2 + g(λ, p, �) = 0 (7)

with

g(λ, p, �) = 2λ − 2λ−5 − pR

µH
λ2 − 2

ε�2

µH2 λ3 (8)

where T is the dimensionless time (T = t/R
√

ρ/µ). Equation (7) is
the equation of motion that evolves the stretch of the balloon
as a function of time, λ(t). This equation is consistent with that
derived in Mockensturm and Goulbourne.12 In writing Eqns (7) and
(8), we use the dimensionless pressure (pR/µH) and voltage
(
√

ε/µ�/H).

BALLOON IN A STATE OF EQUILIBRIUM UNDER
STATIC PRESSURE AND VOLTAGE
When the two loading parameters, p and �, are both static, the
balloon may reach a state of equilibrium, of stretch λeq. In the state
of equilibrium, the equation of motion, Eqn (7), reduces to

g(λeq, p, �) = 0 (9)

This nonlinear algebraic equation determines λeq for given values
of p and �.

Figure 2 plots Eqn (9) as pressure–stretch curves at several
values of voltage. When � = 0, the problem reduces to that
of a pressurized balloon, a well-known problem in the literature
of nonlinear elasticity.21 As the balloon expands, the pressure first
increases, reaches a peak and then decreases. The peak pressure
corresponds to a critical state. When the applied pressure is above
the peak, the balloon cannot reach a state of equilibrium. When
the applied pressure is below the peak, corresponding to each
value of the pressure are two values of the stretch. The value
of the stretch on the rising part of the curve corresponds to a
stable state of equilibrium, and the value of the stretch on the
descending part of the curve corresponds to a state of unstable
equilibrium.

When � �= 0, charges of opposite signs are induced on the
two electrodes. The attraction between the electrodes causes the
membrane of the balloon to reduce in thickness and increase in
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Figure 3. Voltage is plotted as a function of the equilibrium stretch at
several values of the pressure.

area. As shown in Fig. 2, the voltage lowers the critical pressure,
and increases the stretch of any stable state of equilibrium.

Figure 3 plots the condition of equilibrium (9) as volt-
age–stretch curves at several values of pressure. When p = 0,
as the balloon expands, the voltage first increases, reaches a peak
and then decreases. This behavior is understood as follows.12,22 – 26

The voltage induces a positive charge on one electrode, and
negative charge on the other electrode. The oppositely charged
electrodes attract each other, so that the dielectric membrane
reduces its thickness. For a prescribed voltage, the reduction in
the thickness of the membrane increases the electric field. This
positive feedback leads to electromechanical instability, or pull-in
instability. The peak of the curve corresponds to the critical state.
The critical voltage is reduced in the presence of the pressure.

SMALL-AMPLITUDE OSCILLATION AROUND A
STATE OF EQUILIBRIUM
Consider a state of equilibrium, λeq. When the balloon is perturbed
from this state of equilibrium, we write

λ(T) = λeq + �(T) (10)

where �(T) is the amplitude of perturbation, and is taken to be
small. We then expand the function g(λ, p, �) as a power series in �

around the equilibrium stretch λeq. Consequently, to the leading
order in �, the equation of motion (Eqn (7)) becomes

d2�

dT2 + �
∂g

∂λ
(λeq, p, �) = 0 (11)

where the partial derivative

∂g(λ, p, �)

∂λ
= 2 + 10λ−6 − 2

pR

µH
λ − 6

ε�2

µH2 λ2 (12)

is evaluated at λ = λeq, and is a constant independent of time. We
may call this partial derivative the stiffness of the balloon.

When the stiffness is negative, the perturbation �(T) will grow
exponentially in time, and the state of equilibrium is unstable.
When the stiffness is positive, the balloon will oscillate around
the state of equilibrium, and the state of equilibrium is stable.
Inspecting Eqn (11), we see that the natural frequency of the
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Figure 4. Plotted on the plane of (p, �) are curves of constant natural
frequency. The curve labeled by ω0 = 0 corresponds to the critical
conditions. Above this curve, the balloon cannot reach a state of
equilibrium. Below the curve, the balloon can reach a stable state of
equilibrium. In this region, each point (p, �) corresponds to a state of
stable equilibrium, and the balloon can oscillate around the state at the
natural frequency ω0.

small-amplitude oscillation around the stable state of equilibrium
is determined by

ω̃
2
0 = ∂g

∂λ
(λeq, p, �) (13)

where ω̃0 = ω0R
√

ρ/µ is the dimensionless natural frequency and
ω0 is the natural frequency.

When p and � are prescribed at static values, the equilibrium
stretch λeq is determined by Eqn (9), and the dimensionless natural
frequency ω̃0 is determined by Eqn (13). To avoid solving the
nonlinear algebraic Eqn (9), we rearrange Eqns (9) and (13) to
express p and � in terms of λeq and ω̃0, namely

ε�2

µH2 = −λ−2
eq + 7λ−8

eq − 1

2
λ−2

eq ω̃2
0 (14)

pR

µH
= 4λ−1

eq − 16λ−7
eq + λ−1

eq ω̃2
0 (15)

Figure 4 plots the curves of constant natural frequency on the
plane of (p, �), using the following procedure. In Eqns (14) and
(15), we fix ω0. For an arbitrary value of λeq, we obtain a point
(p, �). By varying λeq, we can plot the curve for a constant value
of ω0. Each point on the curve labeled by ω0 = 0 corresponds
to a critical state of the balloon. The coordinates of the point
gives the critical values of p and �. When the pressure and
voltage fall above this curve, the balloon cannot reach a state of
equilibrium. When the pressure and voltage fall below the curve,
the balloon can reach a stable state of equilibrium, and the natural
frequency of the small-amplitude oscillation around the state of
equilibrium can be read from the diagram. As indicated in Fig. 4,
the frequency is normalized by a group of parameters, R−1√µ/ρ.
These parameters are fixed for a given balloon. However, a change
in the static pressure or the static voltage will tune the natural
frequency.

PARAMETRIC EXCITATION
When the pressure or the voltage varies with time, the dynamic
behavior of the balloon can be very complex. To illustrate the
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complexity, we prescribe a static pressure p and a sinusoidal
voltage:

�(t) = �dc + �ac sin(
t) (16)

where �dc is the DC voltage, �ac is the amplitude of the AC
voltage, and 
 is the frequency of excitation. The equation of
motion, Eqn (7), becomes

d2λ

dT2 + 2λ − 2λ−5 − pR

µH
λ2 − 2

ε�2
dc

µH2

(
1 + �ac

�dc
sin(
̃t)

)2

λ3 = 0

(17)
where 
̃ = 
R

√
ρ/µ is the dimensionless excitation frequency.

The oscillatory voltage is a source of energy, and appears in a
coefficient of the ordinary differential Eqn (17). Phenomena of this
type are known as parametric excitation.15,16

The time-dependent stretch λ(T) can be obtained by solving
Eqn (17) for any initial conditions. We set pR/µH = 0.1 and
ε�2

dc/µH2 = 0.1. Were these values of pressure and voltage static,
the balloon could attain a state of equilibrium λeq = 1.029, or
oscillate around the state of equilibrium at the natural frequency
ω0R

√
ρ/µ = 3.096. We use this state of equilibrium as the

initial conditions in our numerical simulations. We then apply
the oscillatory voltage with specific values of �ac and 
. Once
the numerical solution of λ(T) attains a steady state of oscillation,
we define the amplitude of oscillation as half of the difference
between the maximal and minimal values of the stretch.

Figure 5 plots the amplitude of oscillation as a function of
the frequency of excitation. The balloon resonates most strongly
when the frequency of excitation is around the natural frequency,

 ≈ ω0. The balloon also resonates when the frequency of
excitation is several times the natural frequency, for example,

 ≈ 2ω0, a response known as subharmonic resonance.16 In
addition, the balloon resonates when the frequency of excitation
is a fraction of the natural frequency, for example, 
 ≈ ω0/2,
a response known as superharmonic resonance. Resonance at
multiple values of the frequency of excitation is common for
parametric excitation.27,28 As expected, the peak amplitudes at
subharmonic, harmonic and superharmonic resonances increase
with the AC voltage. The peak amplitudes of the fundamental
frequency, as shown in Figs 5(b) and (c), are even unbounded
when �ac/�dc increases to 0.3 and 0.5. The peak amplitudes also
increase with the DC voltage and the pressure.

Figure 6 shows the numerical results of λ(T) for three values of
the frequency of excitation, 
 ≈ ω0/2, ω0, 2ω0. Independent of the
frequency of excitation 
, the balloon always oscillates near the
natural frequency ω0, as defined by the small-amplitude oscillation
around a state of equilibrium. Figure 6 shows a phase shift between
the voltage input and the stretch output. Such a phase shift is
often found in damped and undamped nonlinear oscillators; for
example, the undamped Duffling oscillator is discussed in Jordan
and Smith.15 In general, not only the viscous effect, but also the
nonlinearity can lead to a phase shift between the excitation and
the oscillation.

Experimental data reported in the literature show that the
frequency of the oscillation is double, or is close to, that of
the AC voltage.10,11 For example, in Fig. 70 of Fox,11 
 ≈ ω0/2,
while in Fig. 72 in Fox,11 
 ≈ ω0. Our numerical results not only
show superharmonic and harmonic resonance, but also show
subharmonic resonance with 
 ≈ 2ω0. This discrepancy between
theory and experiment needs to be resolved in future studies.
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Figure 5. Excited by a sinusoidal voltage, the balloon resonates at several
values of the frequency of excitation 
. The oscillating amplitude of
the balloon is plotted as a function of the frequency of excitation for
pR/µH = 0.1 and ε�2

dc/µH2 = 0.1, at selected values of �ac/�dc.

JUMP IN OSCILLATING AMPLITUDE WHEN THE
FREQUENCY OF EXCITATION VARIES
To obtain other essential characteristics of the nonlinear oscillation,
we study Eqn (17) using the method of harmonic balance.15,16 The
time-dependent stretch is approximated as

λ(T) = λeq + a(T) cos ωT + b(T) sin ωT (18)

where λeq is the stretch in the state of equilibrium, a and b are
time-dependent amplitudes and ω is the dimensionless frequency
of oscillation. We assume that the amplitudes vary slowly with
time. We use the truncated Fourier series, and neglect terms of
high frequencies, 2ω, 3ω, etc.

We are interested in the harmonic oscillation in a steady state,
where a and b are constants, and the balloon oscillates at a
frequency equal to the frequency of excitation, ω = 
̃. With
the method of harmonic balance, we substitute Eqn (18) into
Eqn (17), set the coefficients of the constant cos 
̃T and sin 
̃T
to be zero, and neglect terms of higher frequencies. Then we
obtain three nonlinear equations for λeq, a and b. We solve these
nonlinear equations for a and b using the Newton–Raphson
method. Figure 7 plots the oscillating amplitude of the balloon,
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√
a2 + b2, as a function of the frequency of excitation 
̃. Upon

increasing the frequency of excitation, the steady-state solution
will start from point O, to A, to D, then jump to point E, then
to F, and to O′. However, upon decreasing the frequency of
excitation, the steady state will start from point O′, to F, to E and
C. Similar phenomena of hysteresis have been reported in many
parametrically excited oscillators.16,29

The above interpretations are better understood when we study
how the amplitudes vary with time, a(T) and b(T). Since a and b are
taken to vary with time slowly, d2 a/dT2 and d2b/dT2 are neglected.
Taking second derivative of Eqn (18) with respect to T , we obtain
that

d2λ

dT2 =
(

−ω2a + 2ω
db

dT

)
cos ωT +

(
−2ω

da

dT
− ω2b

)
sin ωT

(19)
Substituting Eqn (19) into Eqn (17), setting 
̃ = ω and equating
the coefficients of cos(
̃T) and sin(
̃T) to zero, we obtain that

da

dT
= F(a, b); db

dT
= G(a, b) (20)

The two functions F(a, b) and G(a, b) are lengthy and are not listed
here. Given initial values a(0) and b(0), we can evolve Eqn (20) to
obtain a(T) and b(T).
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Figure 7. Steady-state solutions when pR/µH = 0.1, ε�2
dc/µH2 = 0.1 and

�ac/�dc = 0.1.

Figure 8. Phase plane of a and b when 
R
√

ρ/µ = 2.4, pR/µH = 0.1,
ε�2

dc/µH2 = 0.1 and �ac/�dc = 0.1.

Figure 8 shows the phase plane of (a, b). Steady-state solution 1,
related to point A in Fig. 7, is a center point. Steady-state solution 2,
related to point B in Fig. 7, is a saddle point. Steady-state solution
3, related to point C in Fig. 7, is a center point. Figure 8 shows
that the parametric response depends on the initial condition.
For example, if the initial condition is close to the center point 1,
a(0) = 0 and b(0) = 0.1, the final path will cycle around this center
point. If the initial condition is close to the saddle point 2, however,
the final path will not stay near the saddle point, but will follow
either a larger cycle, say path (1), or a small cycle, say path (2).

The stability analysis of steady-state solution is as follows. With
the infinitesimal perturbation for the steady-state solution, let

a(T) = a0 + α(T); b(T) = b0 + β(T) (21)

where a0 and b0 are the steady-state solution and α(T) and β(T)
are infinitesimal perturbation. Substituting Eqn (21) into Eqn (20),
keeping the linear term for α and β , we obtain

[ dα
dT
dβ
dT

]
=

[ ∂F
∂a

∂F
∂b

∂G
∂a

∂G
∂b

][
α

β

]
(22)

www.interscience.wiley.com/journal/pi c© 2010 Society of Chemical Industry Polym Int 2010; 59: 378–383



3
8

3

Nonlinear oscillation of a dielectric elastomer balloon www.soci.org

The partial derivatives of the functions F(a, b) and G(a, b) are
evaluated at the steady-state solution (a0, b0). The steady-state
solution is stable when the eigenvalues of the matrix in Eqn (22)
have negative real parts. This analysis produces results indicated
on the phase plane.

CONCLUDING REMARKS
We describe a dielectric elastomer balloon with an equation of
motion of one degree of freedom. When the pressure and the
voltage are static, the balloon may reach a state of equilibrium.
We study the stability of the state of equilibrium against small
perturbation, and calculate the natural frequency of the small-
amplitude oscillation around the state of equilibrium. The natural
frequency is tunable by varying the pressure or the voltage. When
the pressure is static but the voltage is sinusoidal, the balloon
resonates at multiple values of the frequency of excitation, giving
rise to superharmonic, harmonic and subharmonic responses.
Furthermore, when the frequency of excitation is changed
continuously, the oscillating amplitude of the balloon may jump at
certain values of the frequency of excitation, exhibiting hysteresis.
We hope to further analyze the nonlinear dynamic behavior by
using models of many degrees of freedom, including dissipation
due to viscosity and leakage. We also hope that future experiments
will confirm the theoretical predictions.
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