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Evidence has accumulated recently that a high-capacity elec-
trode of a lithium-ion battery may not recover its initial shape
after a cycle of charge and discharge. Such a plastic behavior is
studied here by formulating a theory that couples large amounts
of lithiation and deformation. The homogeneous lithiation and
deformation in a small element of an electrode under stresses is
analyzed within nonequilibrium thermodynamics, permitting a
discussion of equilibrium with respect to some processes, but not
others. The element is assumed to undergo plastic deformation
when the stresses reach a yield condition. The theory is com-
bined with a diffusion equation to analyze a spherical particle of
an electrode being charged and discharged at a constant rate.
When the charging rate is low, the distribution of lithium in the
particle is nearly homogeneous, the stress in the particle is low,
and no plastic deformation occurs. When the charging rate is
high, the distribution of lithium in the particle is inhomogeneous,
and the stress in the particle is high, possibly leading to fracture
and cavitation.

I. Introduction

LITHIUM-ION batteries are being developed to achieve safe op-
eration, high capacity, fast charging, and long life. Each

electrode in a lithium-ion battery is a host of lithium.1 Lithium
diffuses into and out of the electrode when the battery is charged
and discharged. If a particle of the electrode material is charged
or discharged slowly and is unconstrained by other materials,
the distribution of lithium in the particle is nearly homogeneous,
and the particle expands or contracts freely, developing no
stress. In practice, however, charge and discharge cause a field
of stress in the particle when the distribution of lithium is inho-
mogeneous,2–5 when the host contains different phases,6 or
when the host is constrained by other materials.7 The stress
may cause the electrode to fracture,6–10 which may lead the ca-
pacity of the battery to fade.11–14

Lithiation-induced fracture not only occurs in current com-
mercial lithium-ion batteries, but is also a bottleneck in devel-
oping future lithium-ion batteries.15,16 For example, of all
known materials for anodes, silicon offers the highest theoret-
ical specific capacity—each silicon atom can host up to 4.4 lith-
ium atoms. By comparison, in commercial anodes of graphite,
every six carbon atoms can host up to one lithium atom. How-
ever, silicon is not used in anodes in commercial lithium-ion
batteries, mainly because the capacity of silicon fades after a
small number of cycles—a mode of failure often attributed to
lithiation-induced fracture.

Recent experiments, however, have shown that the capacity
can be maintained over many cycles for silicon anodes of small

feature sizes, such as thin films,17 nanowires,18 and porous struc-
tures.19 When silicon is fully lithiated, the volume of the material
swells by B300%.15 For anodes of small feature sizes, evidence
has accumulated recently that this lithiation-induced strain can
be accommodated by plastic deformation. For instance, cyclic
lithiation causes 50-nm-thick silicon films to develop undulation
without fracture.17 Likewise, cyclic lithiation causes surfaces of
silicon nanowires to roughen.18 These studies suggest that lit-
hiated silicon undergoes plastic deformation. Furthermore, dur-
ing cyclic lithiation of an amorphous silicon thin film attached to
a substrate, the measured relation between the stress in the film
and the state of charge exhibits pronounced hysteresis.20 This
observation indicates that the lithiated silicon film deforms plas-
tically when the stress exceeds a yield strength. At this writing,
the atomistic mechanism of plastic flow of lithiated silicon is
unclear, but is possibly due to a ‘‘lubricating effect’’ of lithium.
Cyclic lithiation and delithiation can also cause silicon to grow
cavities.21

This paper develops a theory of finite plastic deformation of
electrodes caused by charge and discharge. Plastic deformation
has not been considered in most existing theories of lithiation-
induced deformation.2�10 The works that do include plasticity
have been limited to small deformation.22,23 Here, we analyze
the homogeneous lithiation and deformation in a small element
of an electrode within nonequilibrium thermodynamics, stipu-
lating equilibrium with respect to some processes, but not
others. The element is assumed to undergo plastic deformation
when the state of stress reaches a yield condition. We then com-
bine large plastic deformation and diffusion to analyze the lit-
hiation of a spherical particle of an electrode. When a small
particle is charged and discharged slowly, the stress is small.
When the particle is charged and discharged quickly, the stress is
high, potentially leading to fracture or cavitation.

II. Nonequilibrium Thermodynamics of Coupled Lithiation
and Deformation

Figure 1 illustrates an element of an electrode subject to a cycle
of charge and discharge. The element is small in size, so that
fields in the element are homogeneous. In the reference state
(Fig. 1(a)), the element is a unit cube of a host material, free of
lithium and under no stress. When the element is connected to a
reservoir of lithium at chemical potential m and is subject to
stresses s1, s2, and s3, as illustrated in Fig. 1(b), the element ab-
sorbs a number C of lithium atoms, becomes a block of sides l1,
l2, and l3, and gains in free energy W.

By definition, s1, s2, and s3 are nominal stresses—forces acting
on the element in the current state divided by the areas of the
element in the reference state. The true stresses, s1, s2, and s3,
are forces per unit areas of the element in the current state. The
true stresses relate to the nominal stresses by s15 s1/(l2l3),
s25 s2/(l3l1), and s35 s3/(l1l2).

Associated with small changes in the stretches, dl1, dl2, and
dl3, the forces do work s1dl11s2dl21s3dl3. Associated with
small change in the number of lithium atoms, dC, the chemical
potential does work mdC. Thermodynamics dictates that the
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combined work should be no less than the change in the free
energy:

s1dl1 þ s2dl2 þ s3dl3 þ mdC � dW (1)

The work done minus the change in the free energy is the
dissipation. The inequality (1) means that the dissipation is non-
negative with respect to all processes. The object of this section
is to examine the large amounts of lithiation and deformation
by constructing a theory consistent with the thermodynamic
inequality (1).

As illustrated in Fig. 1(b), when the unit cube of the host is
lithiated under stresses, the deformation is anisotropic: the unit
cube will change both its shape and volume. For example, a thin
film of an electrode constrained on a stiff substrate, upon ab-
sorbing lithium, deforms in the direction normal to the film, but
does not deform in the directions in the plane of the film.

The material deforms by mechanisms of two types: inelastic
and elastic. Inelastic deformation involves mixing and rearrang-
ing atoms. Elastic deformation involves small changes of the
relative positions of atoms, retaining the identity of neighboring
atoms as well as the concentration of lithium. When the stresses
are removed and the reservoir of lithium is disconnected, the
material element will retain part of the anisotropic deformation
(Fig. 1(c)). The phenomenon is reminiscent of plasticity of a
metal. The remaining deformation is characterized by three
stretches l1

i , l2
i , and l3

i , which we call inelastic stretches. The
part of deformation that disappears upon the removal of the
stresses is characterized by three stretches l1

e, l2
e, and l3

e, which
we call elastic stretches. The total stretches are taken to be the
products of the two types of the stretches

l1 ¼ le1l
i
1; l2 ¼ le2l

i
2; l3 ¼ le3l

i
3 (2)

Similar multiplicative decomposition is commonly used to
describe elastic–plastic deformation of metals24 and polymers,25

as well as growth of tissues.26

We characterize the state of the material element by a total of
seven independent variables: l1

e, l2
e, l3

e, l1
i , l2

i , l3
i and C.

Plasticity of a metal and inelasticity of an electrode differ in a
significant aspect. While plastic deformation of a metal changes
shape but conserves volume, inelastic deformation of an elec-
trode changes both volume and shape. We decompose the in-
elastic stretches by writing

li1 ¼ L1=3lp1 ; li2 ¼ L1=3lp2 ; li3 ¼ L1=3lp3 (3)

Here, L is the volume of the material element after the re-
moval of the stresses, namely,

li1l
i
2l

i
3 ¼ L (4)

Inelastic shape change of the material element is described by
l1
p, l2

p, and l3
p (Fig. 1(d)). By the definition of (3) and (4), the

plastic stretches do not change volume, namely,

lp1l
p
2l

p
3 ¼ 1 (5)

We will call l1
p, l2

p, and l3
p the plastic stretches. In our termi-

nology, inelastic deformation includes the changes in both vol-
ume and shape, while plastic deformation involves only the
change in shape.

A combination of (2) and (3) gives l15l1
el1

pL1/3. Taking the
logarithm of both sides of this equation, we write log l15 log
l1
e1log l1

p1log L1/3. The quantity log l1 is the natural strain,
log l1

e the elastic part of the natural strain, and log l1
p the plastic

part of the natural strain.
Most existing theories of lithiation-induced deformation do

not consider plasticity. In effect, these theories assume that, after
a cycle of lithiation and delithiation, the material element
recovers its initial shape. Such an assumption disagrees with
experimental observations of lithiation of large-capacity hosts,
such as silicon, as discussed in the Introduction and in several
recent papers.22,23,27 This paper will allow plasticity, and will
describe rules to calculate large plastic deformation.

The state of the element can be characterized by an alterna-
tive list of seven independent variables: l1

e, l2
e, l3

e, l1
p, l2

p, L, and
C. To progress further, we make the following simplifying as-
sumptions. The inelastic expansion of the volume is taken to be
entirely due to the absorption of lithium, and is a function of the
concentration of lithium:

L ¼ LðCÞ (6)

This function is taken to be characteristic of the material, and
is independent of the elastic and plastic stretches. Equation (6)
eliminates L from the list of independent variables, so that the
state of the material element is characterized by six independent
variables: l1

e, l2
e, l3

e, l1
p, l2

p, and C.
Following the theory of plasticity, we assume that the free

energy of the material element is unaffected by the plastic
stretches. Thus, the free energy is a function of four variables:

W ¼Wðle1; le2; le3;CÞ (7)

This assumption is understood as follows. The plastic
stretches characterize inelastic shape change, involving rearrang-
ing atoms without changing the concentration of lithium. This
rearrangement of atoms may dissipate energy, but does not alter
the amount of free energy stored in the host materials. The sit-
uation is reminiscent of shear flow of a liquid of small mole-
cules—the free energy is stored in molecular bonds, independent
of the amount of flow. For a work-hardening metal, however,
plastic strain will change the free energy stored in the material,
for example, by creating more dislocations. Thus, assuming (7)
amounts to a stipulation that plastic strains do not create such
microstructural changes in lithiated electrodes.

(a)

(b)

(c)(d)

Fig. 1. After a cycle of lithiation and delithiation, an electrode material
may not recover its initial shape. (a) In the reference state, an element of
an electrode material is a lithium-free and stress-free unit cube. (b) Sub-
ject to forces and connected to a reservoir of lithium, the material ele-
ment absorbs lithium, and undergoes anisotropic deformation. (c) When
the stresses are removed and the reservoir of lithium is disconnected, the
material element unloads elastically, and the remaining inelastic defor-
mation is anisotropic. (d) After the material element desorbs lithium
under no stress, the lithium-free host becomes a rectangular block.
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Rewriting the inequality (1) in terms of the changes in the six
independent variables, l1

e, l2
e, l3

e, l1
p, l2

p, and C, we obtain that

s1l1l2l3 �
qW

q log le1

� �
d logle1 þ s2l1l2l3 �

qW
q logle2

� �

�d logle2 þ s3l1l2l3 �
qW

q log le3

� �
d logle3

þ m� qW
qC
þ Osm

� �
dC

þl1l2l3 s1 � s3ð Þd loglp1 þ s2 � s3ð Þd loglp2
� �

� 0

(8)

where sm5 (s11s21s3)/3 is the mean stress, and O5l1
el2

e

l3
edL(C)/dC is the volume per lithium atom in the host.
Each of the six independent variables represents a process to

evolve the material. The processes take place at different rates.
We will adopt a commonly used simplifying approach. Say that
we are interested in a particular time scale. Processes taking
place faster than this time scale are assumed to be instantaneous.
Processes taking place slower than this time scale are assumed to
never occur. In the present problem, the particular time scale of
interest is the time needed for a particle of an electrode material
of a finite size to absorb a large amount of lithium. This time is
taken to be set by the diffusion time scale.

Elastic relaxation is typically much faster than diffusion. We
assume that the material element is in equilibrium with respect
to the elastic stretches, so that in (8) the coefficients associated
with dl1

e, dl2
e, and dl3

e vanish:

s1 ¼
qW

l1l2l3q logl
e
1

; s2 ¼
qW

l1l2l3q logl
e
2

;

s3 ¼
qW

l1l2l3q logl
e
3

(9)

We further assume that the material element is in equilibrium
with respect to the concentration of lithium, so that in (8) the
coefficient of dC vanishes:

m ¼ qWðle1; le2; le3;CÞ
qC

� Osm (10)

The free energy is adopted in the following form:

W ¼W0ðCÞ þ LG ðlogle1Þ
2 þ ðlogle2Þ

2 þ ðlogle3Þ
2

h

þ n
1� 2n

ðlogle1l
e
2l

e
3Þ

2
i (11)

where G is the shear modulus, and n Poisson’s ratio. Equation
(11) can be interpreted as the Taylor expansion in terms of elas-
tic strains. We have assumed that the elastic strains are small,
and only retain terms up to those that are quadratic in strains.
We have neglected any dependence of elastic moduli on the
concentration of lithium. A combination of (9) into (11) shows
that the stresses relate to the elastic strains as

s1 ¼ 2G log le1 þ
n

1� 2n
logle1l

e
2l

e
3

� �

s2 ¼ 2G log le2 þ
n

1� 2n
logle1l

e
2l

e
3

� �

s3 ¼ 2G log le3 þ
n

1� 2n
logle1l

e
2l

e
3

� � (12)

A combination (10) and (11) expresses the chemical potential
of lithium as

m ¼ dW0ðCÞ
dC

� Osm (13)

In writing (12) and (13), we have neglected the terms qua-
dratic in the elastic strains.

The material element, however, may not be in equilibrium
with respect to plastic stretches. Consequently, the inequality (8)
is reduced to

ðs1 � s3Þd loglp1 þ ðs2 � s3Þd log lp2 � 0 (14)

This thermodynamic inequality may be satisfied by many ki-
netic models—creep models that relate the rate of plastic strains
to stresses. For simplicity, here we adopt a particular type of
kinetic model: the model of time-independent plasticity.28 A
material is characterized by a yield strength. When the stress is
below the yield strength, the rate of the plastic strain is taken to
be so low that no additional plastic strain occurs. When the
stress reaches the yield strength, the rate of plastic strain is taken
to be so high that plastic strain increases instantaneously.

To calculate plastic deformation, we adopt the J2 flow the-
ory.28 Recall that the plastic stretches preserve the volume,
l1
pl2

pl3
p5 1. Consequently, (14) may be written in a form sym-

metric with respect to the three directions:

ðs1 � smÞd log lp1 þ ðs2 � smÞd log lp2
þ ðs3 � smÞd log lp3 � 0

(15)

The J2 flow theory is prescribed as

d log lp1 ¼ aðs1 � smÞ;
d log lp2 ¼ aðs2 � smÞ;
d log lp3 ¼ aðs3 � smÞ

(16)

where a is a nonnegative scalar. This flow theory is symmetric
with respect to the three directions, satisfies l1

pl2
pl3

p 5 1, and is
consistent with the thermodynamic inequality (15). In numerical
calculations performed later, we will assume that the material is
perfectly plastic. Let sY be the yield strength measured when the
material element is subject to uniaxial stressing. The yield
strength is taken to be a function of concentration alone,
sY(C). When the material element is under multiaxial stressing,
the equivalent stress is defined by

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
½ðs1 � smÞ2 þ ðs2 � smÞ2 þ ðs3 � smÞ2�

r
(17)

The material element yields under the von Mises condition:
se 5sY(C). The value of a is specified by the following rules

a ¼ 0; se < sY

a ¼ 0; se ¼ sY; dse < dsY

a > 0; se ¼ sY; dse ¼ dsY

8<
: (18)

III. A Spherical Particle of an Electrode

We now apply the theory to a spherical particle of an electrode
material (Fig. 2). We have previously solved this problem using
a theory of small plastic deformation.22 Here we will allow large
deformation. We model such an inelastic host of lithium by
considering coupled lithium diffusion and large elastic–plastic
deformation. In the following paragraphs, we specify the kine-
matics of large deformation, the kinetics of lithium diffusion, the
flow rule of plasticity, and the thermodynamics of lithiation. The
results of an amorphous silicon particle during charge and dis-
charge are shown in Section IV. The detailed numerical proce-
dure is included in Appendix A.

Before absorbing any lithium, the particle is of radius A, and
is stress-free. This lithium-free particle is taken to be the refer-
ence configuration. At time t, the particle absorbs some lithium,
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the distribution of which may be inhomogeneous in the radial
direction, but retains spherical symmetry. The inhomogeneous
distribution of lithium induces in the particle a field of stress,
and the particle swells to a radius a.

The kinematics of the large deformation is specified as follows.
The spherical particle consists of a field of material elements. A
material element a distance R from the center in the reference
configuration moves, at time t, to a place a distance r from the
center. The function r(R, t) specifies the deformation of the par-
ticle. In representing a field, we may choose either r or R as an
independent variable. One variable can be changed to the other by
using the function r(R, t). We will indicate our choice in each field
explicitly when the distinction is important. The radial stretch is

lr ¼
qrðR; tÞ
qR

(19)

The hoop stretch is

ly ¼
r

R
(20)

The kinematics of lithium is specified as follows. Let C be the
nominal concentration of lithium (i.e., the number of lithium
atoms per unit volume of pure silicon in the reference state). The
distribution of lithium in the particle is specified by the function
C(R, t). Because of the spherical symmetry, lithium diffuses in
the radial direction. Let J be the nominal flux of lithium (i.e., the
number of lithium atoms per unit reference area per unit time).
The nominal flux is also a time-dependent field, J(R, t). Con-
servation of the number of lithium atoms requires that

qCðR; tÞ
qt

þ qðR2JðR; tÞÞ
R2qR

¼ 0 (21)

Later we will also invoke the true concentration c (i.e., the
number of lithium atoms per unit volume in the current config-
uration), and the true flux j (i.e., the number of lithium atoms
per current area per time). These true quantities relate to their
nominal counterparts by J5 jly

2 and C5 clrly
2.

Write the radial stretch lr and the hoop stretch ly in the form

lr ¼ lerl
p
rL

1=3; ly ¼ leyl
p
yL

1=3 (22)

We will mainly consider high-capacity hosts that undergo
large deformation by lithiation, and will neglect the volumetric
change due to elasticity, setting lr

e(ly
e)25 1. Consistent with this

assumption, we set Poison’s ratio n5 1/2, and set Young’s mod-

ulus E5 3G. Recall that by definition the plastic stretches pre-
serve volume, lr

p(ly
p)25 1.

In the spherical particle, each material element is subject to a
state of triaxial stresses, (sr, sy, sy), where sr is the radial stress,
and sy the hoop stress. The state of elastic–plastic deformation is
taken to be unaffected when a hydrostatic stress is superimposed
on the element. In particular, as illustrated in Fig. 3(a), superim-
posing a hydrostatic stress (�sy,�sy,�sy) to the state of triaxial
stresses (sr, sy, sy) results in a state of uniaxial stress (sr�sy, 0,
0). The state of elastic–plastic deformation of the element subject
to the triaxial stresses is the same as the state of plastic deforma-
tion of the element subject to a uniaxial stress sr�sy. We rep-
resent the uniaxial stress–stretch relation by the elastic and
perfectly plastic model. Figure 3(b) sketches this stress–strain re-
lation in terms of the stress sr�sy and the elastic–plastic part of
the true strain, log (lr

elr
p)5 log(lrL

�1/3). The yield strength in the
state of uniaxial stress, sY, is taken to be a constant independent
of the plastic strain and concentration of lithium.

In the spherical particle the stresses are inhomogeneous, rep-
resented by functions sr(R, t) and sy(R, t). The balance of forces
acting on a material element requires that

qsrðR; tÞ
lrqR

þ 2
sr � sy

lyR
¼ 0 (23)

We specify a material model of transport as follows. We
assume that each material element is in a state of local equilib-
rium with respect to the reaction between lithium atoms and host
atoms, so that we can speak of the chemical potential of lithium
in the material element. We further assume that the chemical
potential of lithium in the material element takes the form:

m ¼ m0 þ kT logðgcÞ � Osm (24)

where m0 is a reference value, g the activity coefficient, and c the
true concentration of lithium.

If the distribution of lithium in the particle is inhomogeneous,
the chemical potential of lithium is a time-dependent field, m(r,
t), and the particle is not in diffusive equilibrium. The gradient
of the chemical potential drives the flux of lithium. We adopt a
linear kinetic model:

j ¼ � cD

kT

qmðr; tÞ
qr

(25)

(a)

(b)

Fig. 3. (a) The state of elastic–plastic deformation of the element sub-
ject to the triaxial stresses (sr, sy, sy) is the same as that of the element
subject to a uniaxial stress (sr�sy). (b) The uniaxial stress–strain rela-
tion in terms of the stress (sr�sy) and the true elastic–plastic strain log
(lrL

�1/3).

(a)

(b)

Fig. 2. (a) In the reference state, a spherical particle of an electrode is
lithium-free and stress-free. (b) In the current sate, the particle is par-
tially lithiated, and develops a field of stress.
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This relation has been written in a conventional form, in
terms of the true flux j and the true concentration c. Note that
kT is the temperature in dimensions of energy, and that (25) may
be regarded as a phenomenological definition of the diffusivity
D. Recall that the flux relates to the drift velocity of lithium in
the host by j5 cndrift. Thus, D/kT is the mobility of lithium in
the host. The diffusivity may depend on concentration and
stress.

The particle is subject to the following boundary conditions.
Because of the symmetry, r(0, t)5 0 and J(0, t)5 0. On the sur-
face of the particle, the radial stress vanishes at all time, sr(A,
t)5 0. The particle is charged and discharged by prescribing on
the surface of the particle a constant flux J0, namely, J(A,
t)57J0. The signs differ for charge and discharge.

IV. Numerical Results and Discussions

We solve the initial-boundary value problem numerically, as
described in Appendix A. This section describes the numerical
results, and discusses their implications. For simplicity, we set
g5 1 and assume that O, E, sY, and D are constant. The initial-
boundary value problem has three dimensionless parameters:
OE/kT, sY/E, and J0AO/D. For lithium in amorphous silicon,
representative values are O5 1.36� 10�29 m3, E5 80 GPa,
sY5 1.75 GPa,20 and D5 10�16 m2/s,29 giving OE/kT5 263
and sY/E5 0.022. The parameter J0AO/D is a dimensionless
measure of the charging rate, and may be interpreted as follows.
Let Cmax be the maximum theoretical concentration of lithium.
When the spherical particle of radius A is charged by a constant
flux J0, the nominal time t needed to charge the particle to the
theoretical maximum concentration is given by 4pA2J0t5
(4pA3/3)Cmax. For silicon, the volume of fully lithiated state
swells by about 300%, so that OCmax�3. For a particle of ra-
dius A5 1 mm, t5 1 h corresponds to J0AO/D5 2.8. In the fol-
lowing description, we use t to represent the charge rate; for
example, t5 0.5 h means that it needs 0.5 h to charge silicon to
reach the theoretical maximum lithium concentration. Smaller
values of t represent a faster charge process. We normalize time
as Dt/A2. For a particle of radius A5 1 mm, the diffusion time
scale is A2/D5 104 s.

Figure 4 shows the evolution of the fields in the spherical
particle charged at the rate of t5 1 h. The simulation is initiated
when the particle is lithium-free, and is terminated when the
concentration at the surface of the particle reaches the full ca-
pacity, OCmax5 3, and the interior of the particle is still much
below the full capacity (Fig. 4(a)). At all time, r(R, t)4R, indi-
cating all material elements in the particle move away from the
center of the particle (Fig. 4(b)). The ratio lr/ly measures the
anisotropy of the deformation (Fig. 4(c)). The deformation is
highly anisotropic near the surface of the particle, but is isotro-
pic at the center of the particle. Plastic deformation occurs near
the surface of the particle, but is absent at the center of the
particle (Fig. 4(d)). The chemical potential of lithium in the par-
ticle is inhomogeneous, driving lithium to diffuse from the sur-
face of the particle toward the center (Fig. 4(e)).

Figures 4(f)–(h) show the distributions of the radial, hoop
and equivalent stresses. The traction-free boundary condition
requires that the radial stress at the surface of the particle to
vanish at all times. Because the distribution of lithium in the
particle is inhomogeneous, the particle expands more near the
surface than at the center, resulting in tensile radial stresses in-
side the particle. The hoop stress is compressive near the surface,
and tensile near the center. For the spherical particle, the equiv-
alent stress is se 5 |sy�sr|, which is bounded in the interval
0rsersY. By symmetry, the center of the sphere is under
equal-triaxial tensile stresses. Because of the triaxial constraint
at the center, the radial stress and hoop stress can exceed the
yield strength.

The high level of tensile stresses at the center of the sphere
may generate cavities. An experimentally measured value of the
yield strength is sY5 1.75 GPa.20 Our calculation indicates that

the stress at the center of the particle can be several times the
yield strength. Let r be the radius of a flaw and gsurface be the
surface energy. For the flaw to expand, the stress needs to over-
come the effect of the Laplace pressure, 2gsurface/r. Taking
gsurface5 1 J/m2, we estimate that the critical radius r5 1 nm
when the stress at the center of the particle is 2 GPa. Lithiation-
induced cavitation has been observed in a recent experiment.21

To illustrate effects of yielding, Fig. 5 compares the two cases:
sY 5 1.75 GPa and sY5N (no yielding). The fields are plotted
at time Dt/A25 0.048. As expected, yielding allows the particle
to accommodate lithiation by greater anisotropic deformation,
Fig. 5(b). Yielding also significantly reduces the magnitudes of
the stresses, Figs. 5(c) and (d). This observation implies that
fracture and cavitation may be avoided for electrodes with low
yield strength.

As shown by (24), the chemical potential of lithium depends
on the mean stress. This effect of stress on chemical potential has
been neglected in some of the previous models. The representa-
tive values O5 1.36� 10�29 m3 and sY 5 1.75 GPa give an
estimate OsY5 0.15 eV, which is a value significant compared
with the value of the term involving concentration in the ex-
pression of the chemical potential. Figure 6 compares results
calculated by including or neglecting the term Osm in the ex-
pression of the chemical potential (24). The mean stress sm is
compressive near the surface of the particle and tensile at the
center. Consequently, the gradient of the mean stress also mo-
tivates lithium to migrate toward the center. Here we show the
fields at the time when the surface of the particle attains the full
capacity. The case with the mean stress included in the expres-
sion of the chemical potential absorbs more lithium at the cen-
ter, Fig. 6(a). The stress gradient also decreases the chemical
potential of lithium in the particle, Fig. 6(b). The contribution of
the stress to the chemical potential helps to homogenize lithium
distribution, and consequently reduces the stress.

Figure 7 compares the fields for three charging rates, t5 0.5 h,
t5 1 h and t52 h. Each simulation is terminated when the sur-
face of the particle attains the full capacity. The stress level is
determined by the total amount of lithium inserted into the par-
ticle and the degree of inhomogeneity in the distribution of this
amount of lithium. At a high charging rate, t5 0.5 h, the dis-
tribution of lithium is highly inhomogeneous, as in Fig. 7(a).
However, the surface of the particle reaches its full capacity very
rapidly. At this time, not much lithium has been inserted into the
particle, so the stresses are fairly low and the deformation is
anisotropic only near the surface of the particle. At such a fast
charging rate, the particle will not store much lithium. At an
intermediate charging rate, t5 1 h, lithium has some time to
diffuse toward the center of the particle, but not enough time to
fully homogenize the distribution of lithium. Consequently, rel-
atively large stresses develop and the deformation is quite an-
isotropic. At a yet slower charging rate, t5 2 h, there is enough
time for diffusion to nearly homogenize the distribution of lith-
ium. At this slow charging rate, the particle is effective as an
electrode in that it can store a large amount of lithium before the
surface of the particle reaches the full capacity. This homoge-
nization leads to relatively low stresses and nearly isotropic
deformation.

Figure 8 shows the time evolution of the stress at the center of
the particle for three charging rates. For a fast charging case
(t5 0.5 h), the stress builds up until the outer surface reaches its
full capacity. At an intermediate charging rate (t5 1 h), the
stress builds up until it is large enough to significantly contribute
to the chemical potential. At this point, both the stress gradient
and concentration gradients tend to homogenize the concentra-
tion of lithium, and the stress decreases. However, the charging
rate is still fairly fast relative to the time for diffusion. Thus, the
concentration of lithium cannot be fully homogenized and the
stress cannot be fully relaxed before the surface of the particle
reaches the full capacity. By contrast, for the case of t5 2 h, the
charging rate is slow enough for diffusion to homogenize the
distribution of lithium before the surface of the particle reaches
the full capacity, as shown in Fig. 7(a). As the distribution of
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 4. As a spherical particle is being charged at the rate of t5 1 h, various fields evolve: (a) concentration of lithium, (b) deformation field, (c) ratio of
the radial stretch to the hoop stretch, (d) plastic stretch in the radial direction, (e) chemical potential of lithium, (f) radial stress, (g) hoop stress, and (h)
equivalent stress.
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(a)

(b)

(c)

(d)

Fig. 5. The effect of plastic yield on various fields: (a) concentration of lithium, (b) plastic stretch in radial direction, (c) radial stress, and (d) hoop stress.
The charging rate is t5 1 h, and the fields are given at time Dt/A2 5 0.048.

(a)

(b)

(c)

(d)

Fig. 6. Fields calculated with or without including the mean stress in the expression of the chemical potential of lithium are compared: (a) concentration
of lithium, (b) chemical potential of lithium, (c) radial stress, and (d) hoop stress. The charging rate is t5 1 h, and both fields are given at the end of
charge time, i.e., Dt/A2 50.132 with stress calculation, Dt/A25 0.009 without stress calculation.
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lithium is homogenized, the stress is relaxed, as shown in Fig. 8.
The effect of the charging rate on the triaxial tension at the
center of the particle may be used to guide future experiments to
study cavitation.

Figure 9 shows the time evolution of the lithium concentra-
tion and the stress fields as lithium desorbs from the spherical
particle. The simulation begins when the particle is at full ca-
pacity of lithium and is stress-free, and is terminated when the
concentration of lithium vanishes near the surface of the parti-
cle. As lithium desorbs, the concentration near the surface
becomes lower than it is near the center of the particle,
Fig. 9(a). This inhomogeneity causes the particle to contract
more near the surface than at the center. Consequently, a com-
pressive radial stress develops, Fig. 9(b). The hoop stress at the

surface becomes tensile with magnitude sY, Fig. 9(c). This ten-
sile stress may result in the propagation of surface flaws. Because
the tensile stress is limited by the yield strength, fracture may be
averted when the yield strength is low.

V. Conclusions

This paper formulates a theory that couples lithiation and large
elastic–plastic deformation. The homogeneous lithiation and
deformation in a small material element is analyzed using non-
equilibrium thermodynamics. The material is assumed to un-
dergo plastic deformation when the state of stress reaches the
yield condition. A spherical particle subject to a constant rate of
charge and discharge is analyzed by coupling diffusion and large
plastic deformation. The effect of plastic yielding, stress on the
chemical potential of lithium, and charging rates are studied.
When the charging rate is low, the distribution of lithium in the
particle is nearly homogeneous, and the stress is low. When the
charging rate is high, the stress at the center of the particle can
substantially exceed the yield strength. The developed stress
gradient also greatly influences the diffusion of lithium, tending
to homogenize the distribution of lithium in the particle. Plastic
yielding can markedly reduce the magnitude of stress.

Appendix A: Notes on Numerical Procedure

We rewrite the governing equations in the form used in our nu-
merical simulation. It has been assumed that neither elastic nor
plastic deformation causes any volumetric change. It has been
also assumed that O is a constant. Consequently, the volumetric
change of a material element is

lrl
2
y ¼ 1þ OC (A-1)

(a)

(b)

(c)

(d)

Fig. 7. The effect of the charging rate on various fields: (a) concentration of lithium, (b) ratio of radial stretch to hoop stretch, (c) radial stress, and
(d) hoop stress.

Fig. 8. The radial stress at the center of the sphere as a function of time
at various charge rates.
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A combination of (A-1), (19) and (20) gives that

rðR; tÞ ¼ 3

Z R

0

ð1þ OCÞR2dR

	 
1=3
(A-2)

Here we have used a condition due to the spherical symmetry
of the problem, r(0, t)5 0.

The kinetic model (25) can be written in terms of the nominal
quantities:

J ¼ � CD

kTl2r

qmðR; tÞ
qR

(A-3)

A combination of (A-3) and (24) gives

J ¼ � CD

ð1þ OCÞ2
r

R

� �4 q
qR

� log
gC

1þ OC
� Oðsr þ 2syÞ

3kT

	 

(A-4)

Recall that the flux satisfies the boundary conditions
J(0, t)5 0 and J(A, t)57J0. The sign of the latter condition
depends on whether the particle is being charged or discharged.

The stress (sy�sr) and the plastic stretch evolve according to
the ideal elastic–plastic model, Fig. 3(b). When |sr�sy|osY,
the plastic stretch lr

p remains fixed, and the elastic stretch is
given by log lr

e 5 (sr�sy)/E, which is written as

sr � sy ¼ E logðL�1=3lr=lpr Þ (A-5)

when sr�sy57sY, the elastic stretch is fixed at log lr
e57sY/

E, and the plastic stretch adopts a value

lpr ¼ lrL
�1=3 exp �sY

E

� �
(A-6)

Integrating (23), we obtain that

srðR; tÞ ¼ 2

Z R

A

ðsr � syÞð1þ OCÞR2

r3
dR (A-7)

Here we have used the boundary condition sr(A, t)5 0.
We use the finite difference method, and divide the interval

0rRrA into small elements. The initial condition C(R, 0) is
prescribed; for example, we set C(R, 0)5 0 to simulate the pro-
cess of lithiation, and set C(R, 0)5Cmax to simulate the process
of delithiation. The initial values of the function J(R, 0) are set
with J(0, 0)5 0 and J(A, 0)57J0 at the boundaries, and J(R,
0)5 0 at the interior points. We then evolve all functions with a
time step Dt. At a given time t, the functions C(R, t) and J(R, t),
along with the boundary conditions J(0, t)5 0 and J(A,
t)57J0, are inserted into (21) to calculate C(R, t1Dt). The re-
sult is then inserted into (A-2) to calculate r(R, t1Dt). The field
sr(R, t1Dt) is calculated by the integrating (A-7), where
(sy�sr) is determined by the uniaxial stress–strain relation.
We then calculate J(R, t1Dt) by using (A-4). This procedure
is repeated for the next time step to evolve the fields.
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Fig. 9. As a spherical particle is being discharged at the rate of t50.5 h, various fields evolve (a) concentration of lithium, (b) radial stress, (c) hoop
stress, and (d) equivalent stress.
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