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Swellable elastomers are widely used in the oilfield to seal the flow of downhole fluids. For
example, when a crack appears in self-healing cement, the liquid in the surroundings flows into the
crack and permeates into the cement, causing small particles of elastomers in the cement to swell,
resulting in the blocking of the flow. Elastomers are also used as large components in swellable
packers, which can swell and seal zones in the borehole. In these applications, the elastomers swell
against the constraint of stiff materials, such as cement, metal, and rock. The pressure generated by
the elastomer against the confinement is a key factor that affects the quality of the sealing. This
work develops a systematic approach to predict the magnitude of the pressure in such components.
Experiments are carried out to determine the stress-stretch curve, free swelling ratio, and confining
pressure. The data are interpreted in terms of a modified Flory-Rehner model. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4745878]

I. INTRODUCTION

Crosslinked polymer networks can absorb solvents and
swell many times to their initial volume. Swelling is used by
plants to regulate the transport of water,1 and is exploited in
consumer products such as contact lenses2 and superabsorb-
ent diapers.3 Swelling elastomers have been developed as
vehicles for drug delivery,4 and as actuators and sensors in
microfluidics.5

We are particularly interested in the applications of
swellable elastomers in the oilfield. During the last decade,
the dramatic volume change due to swelling has been widely
used in the oilfield to seal undesired fluid flows in the well-
bore. Applications include self-healing cements6–8 and swel-
lable packers.9–12 The swellable material can seal the fluid
channel automatically whenever the fluid is a good solvent,
and the types of elastomers can be chosen to respond to cer-
tain fluids. For example, a styrene butadiene rubber (SBR)
swells in oil while a hydrogel swells in water. Such a seal is
self-actuated and require limited intervention, a feature that
is especially attractive in deep wells where intervention is
difficult and costly.

In these applications, the swelling of the elastomer is re-
stricted by surrounding materials. In self-healing cements,
the swelling of small particles of an elastomer is constrained
by the cement. In packers, the swelling of a cylindrical tube
of an elastomer is constrained by the casing (a metallic tube)
and rocks. The constrained swelling generates a compressive
force. In most cases, the larger the swelling-generated force,
the better the sealing quality.

Despite the intensive use of swellable materials in the oil-
field, an effective method to predict the behavior of swellable
elastomers is lacking. A large amount of data has been col-
lected for elastomers under free-swelling conditions, but little
work has been done to study elastomers swelling under highly
constrained conditions. Nonlinear Flory-type field theories

that are formulated on the basis of kinematics of network de-
formation, kinetics of solvent migration, and thermodynamics
of swelling have been developed in the past few years.13–16

These theories require few experiments to estimate coeffi-
cients values and can be implemented into the commercial fi-
nite element software, e.g., ABAQUS, to predict the behavior of
swellable elastomer with irregular geometries and under vari-
ous boundary conditions, which is attractive to the industrial
applications. However, more experiments are needed to vali-
date these theories.

This work introduces a systematic approach to analyze
swelling elastomers under constraints. This approach com-
bines experiments and modeling. The experimental approach
is described first and emphasizes a novel experimental setup
that can directly measure the buildup of swelling-induced
forces, referred to as swelling pressure. Additional experi-
ments are carried out to measure the stress-stretch curves of
an elastomer containing various amounts of solvent, and the
swelling ratio under the unconstrained conditions. These data
are interpreted by using a modified Flory-Rehner model.

II. EXPERIMENTS

An oil-swellable elastomer, SBR (23.5% styrene, refer-
enced 1502 at Astlett Rubber), is used to swell in hexadecane
(C16H34) (99% purity), at 82 !C. This combination can be
considered representative of oilfield applications.

Three experiments are used to characterize the swel-
lable elastomer: a uniaxial compression test, a free-swelling
test, and a constrained-swelling test. The first two experi-
ments have been extensively used. The third experiment
addresses a much less-studied aspect: the constrained-
swelling behavior, and was inspired by the work done by
Katti and Shanmugasundaram,17 who measured the swel-
ling pressure of clays.

We perform the uniaxial compression test using samples
of various swelling ratios (Fig. 1(a)). Prior to the compres-
sion test, the partially swollen samples are prepared anda)Email: ylou@slb.com.
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homogenized (swelled samples are wrapped in sealing plas-
tic films and left in oven for homogenization). By fitting the
stress-strain response curves with a neo-Hooken model, one
can estimate the shear modulus G of the sample as a function
of the swelling ratio.

In the free-swelling test, the sample is submerged in the
solvent (Fig. 1(b)). By measuring the volume (or mass) in-
crement as a function of time, one can estimate the kinetics
of swelling and the equilibrium volume (or mass) increment
of the elastomer.

In the constrained-swelling test, a dry cylindrical sam-
ple is placed in a rigid container that has the same radius,
preventing the radial swelling (Fig. 1(c)). The sample is
placed between two permeable stiff plates with a gap that
corresponds to the desired swelling ratio. The whole setup
is then heated to the set temperature. Note that the gap
needs to be adjusted to take into account any thermal
expansion of the setup. Then the solvent is added and the
elastomer swells. After the elastomer touches the top sur-
face of the container, it starts generating a force against the
top plate. This force builds up over time until it stabilizes.
We record the force generated as a function of time by
using a load cell. The experiment can be repeated by chang-
ing the height of the top plate. This multi-step experiment
enables us to plot the equilibrium swelling pressure as a
function of swelling ratio, which gives essential informa-
tion to predict swellable packer sealing ability. Table I lists

the swelling pressures as a function of swelling ratio. Note
that the accuracy on setting the swelling ratio is about 3%.
As seen in Fig. 2, the experimental results can be fitted with
a power-law expression

Swelling pressure ¼ 6:0ðH=hÞ6:3:

The exponent value (%6.3) obtained here via least-square
fitting is larger than the value (%1.9) given by Horkay and
Zrinyi18 in the scale theory under semi-dilute condition and
the value (%2.2) given by Geissler et al.19 via fitting the
power-law with polyacrylamide-water gel experiments.
Although these types of scaling theories can better match the
experimental results than Flory-type theory discussed below
(e.g., see Fig. 6), they are difficult to be applied in cases
where the elastomer is under complex tri-axial loading and
complex boundary conditions.

In this test, the two limiting cases are (1) the zero swel-
ling ratio case, which is to measure the maximum swelling
pressure and (2) the maximum swelling ratio with nonzero
swelling pressure, which can be used to measure the maxi-
mum volume the elastomer can seal under the constrained
condition.

It is worth mentioning that the conventional approach to
measuring the swelling pressure requires two separate experi-
ments: the first one is to measure the osmotic pressure for
uncrosslinked polymer mixed with fluid, and the second one
to measure the stress on the crosslinked polymer network
under volumetric expansion, referred to as volumetric modu-
lus.20 The swelling pressure becomes the difference between
osmotic pressure and volumetric modulus. This method is ap-
plicable for pure systems only and requires the detailed
knowledge of the swellable elastomer, which is either not
available in many industrial applications when the material is
a trade secret, or too complex (elastomers can be blended with
ten or more additives).

FIG. 1. Schematics of experiments for determining thermodynamics param-
eters of a gel. (a) Stress-stretch curve measured from uniaxial compression
test. (b) Swelling ratio measured from free swelling experiments. (c) Block-
ing force measured from constrained swelling.

TABLE I. Swelling pressure vs. swelling ratio.

kc 1.03 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80

r3 (MPa) 5.00 3.15 1.95 1.20 0.75 0.50 0.31 0.19 0.10

FIG. 2. A power-law data fitting of swelling pressure as a function of
swelling ratio for SBR swelling in hexadecane at T¼ 82 !C, where the rec-
tangular dots with error bars are experimental results measured via
constrained-swelling test. The blue line is the power-law fitting.
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III. THEORY

In this section, a modified Flory-Rehner model is intro-
duced as an extension of our previous work.21 Consider a
block of representative volume of elastomer (Fig. 3). In the
reference state, the block is a dry network and subject to no
stresses, and is of dimensions L1, L2, and L3. When sub-
merged in a solvent-containing environment and subjected to
forces P1;P2, and P3, the block absorbs R number of solvent
molecules and is of dimensions l1, l2, and l3. Let X be the
volume per solvent molecule. If we assume that both elasto-
mers and solvents are incompressible, the volume in current
state V & l1l2l3 equals the sum of the volume of the dry net-
work Vo & L1L2L3 and the volume of absorbed solvent mole-
cules XR

l1l2l3 ¼ L1L2L3 þ XR: (1)

Define the nominal concentration of solvent by C ¼ R=Vo,
and the stretches by k1 ¼ l1=L1, k2 ¼ l2=L2, and k3 ¼ l3=L3.
Equation (1) can be written as

k1k2k3 ¼ 1þ XC ¼ V=Vo: (2)

Let l be the chemical potential of the solvent in the environ-
ment, and W be the free energy of the block in the current
state divided by the volume of the block in the reference
state. Define the stresses as r1 ¼ P1=ðl2l3Þ, r2 ¼ P2=ðl3l1Þ,
and r3 ¼ P3=ðl1l2Þ. When the network equilibrates with
the environment and the applied forces, the stresses are given
by15,21

r1 ¼
@Wðk1; k2; k3Þ

k2k3@k1
( l

X
; (3)

r2 ¼
@Wðk1; k2; k3Þ

k1k3@k2
( l

X
; (4)

r3 ¼
@Wðk1; k2; k3Þ

k1k2@k3
( l

X
: (5)

Following the classical work of Flory and Rehner,22 we
assume that the change in the free energy during swelling is
a sum of elastic and mixing energy

W ¼ Welastic þWmix: (6)

The elastic energy is described by the neo-Hookean model,
leading to the scaling relation21

~G
F ¼ GoðV=VoÞ(1=3; (7)

where Vo is the volume and Go is the shear modulus of the
dry elastomer, and V is the volume and ~G

F
is the shear mod-

ulus of the swollen elastomer. As shown below, the scaling
relation (7) does not fit our experimental data. Note that the
scaling relation (7) was challenged by De Gennes,23 who
showed that in many instances, both the elastic and the
entropic energies were largely overestimated in the Flory-
Rehner model. A dependence in ðV=VoÞ(7=12 (Ref. 24) was
reported. Here, we modify the expression (7), and write that
the shear modulus at the current configuration denoted as
~G

M
, as

~G
M ¼ GoðV=VoÞ(a(1=3 ¼ GmðV=VoÞ(1=3; (8)

where a parameter a is introduced to account for the varia-
tion of the shear modulus with swelling ratio. We define
Gm & GoðV=VoÞ(a as the shear modulus variation in addi-
tion to the volumetric effect considered by Flory and Rehner.
Using this modified shear modulus, we write the elastic
energy density in the form of neo-Hooken model

Welastic ¼
Gmðk1k2k3; aÞ

2
½k2

1 þ k2
2 þ k2

3 ( 3( 2 logðk1k2k3Þ*:

(9)

The mixing energy is approximated using a modified version
of Flory-Huggins model25,26

Wmix ¼ kBT bC log
XC

1þ XC
þ vC

1þ XC

! "
; (10)

where b is a dimensionless parameter and v is the Flory-
Huggins parameter that measures the interaction between
the elastomer and solvent. The first and second terms in the
bracket are the contribution of entropy and enthalpy to the
mixing, respectively. The parameter b is introduced follow-
ing the work of Lichtenthaler et al.25 who have shown that
the Flory-Huggins model overestimates the entropy of swel-
ling if there is a size difference between species.

FIG. 3. (a) In the reference state, a dry network
of polymers contains no oil and is subject to no
applied forces. (b) In the current state, the net-
work is in equilibrium with applied forces, and
with an environment in which the chemical
potential of the oil is fixed.
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A combination of Eqs. (2)–(10) gives

r1X
kBT
¼ Gm
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1( 1

k2
1

 !
( a

2
Nðk1;k2; k3Þ

" #

þ b log 1( 1

k1k2k3

# $
þ b
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k2
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2
2k

2
3

( l
X
; (11)
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þ b log 1( 1
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þ b
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r3X
kBT
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where Nðk1; k2; k3Þ is given by

Nðk1; k2; k3Þ ¼ k2
1 þ k2

2 þ k2
3 ( 3( 2 logðk1k2k3Þ:

Note that these expressions are identical to those given in the
work done by Hong et al.15 when a ¼ 0 and b ¼ 1.

IV. PARAMETERS ESTIMATION AND MODEL
VALIDATION

The modified Flory-Rehner model introduces the fol-
lowing parameters: X, Go, a, b, and v. The molecular volume
of hexadecane is known, X ¼ 5:15+ 10(28 m3. The initial
shear modulus of dried elastomer, Go, is estimated as
0:7 MPa by fitting the stress-strain curve measured via uniax-
ial compression test (Fig. 4). The shear moduli of samples of
various swelling ratios are measured with the same method
(Fig. 5). We use these experimental results to estimate a in
the expression (8) with adopting the least square fitting
method and estimate a ¼ 0:47. (Note that the standard devia-
tion for this fitting is 5%.)

The other two coefficients b and v are estimated using a
combination of the free-swelling test and one step of the
multi-step constrained-swelling test. In the free-swelling test,
the principal stretches of the elastomer sample are equal in
each direction at equilibrium. Equation (1) gives that

k1 ¼ k2 ¼ k3 ¼ kf ¼ ð1þ XCÞ1=3 ¼ ðV=VoÞ1=3: (14)

For SBR swelling in hexadecane at 82 !C, we have measured
the equilibrium volume expansion, V=Vo , 210%, so that
kf , 1:3.

When an elastomer swells in a pure solvent under no con-
straint, in equilibrium, the stresses and the chemical potential
vanish

r1 ¼ r2 ¼ r3 ¼ 0; l ¼ 0: (15)

Inserting Eq. (15) into Eq. (11), we obtain that

GmX
kBT

1

k2
f

( 3a
2

 !

kf (
1

kf

# $
þ 3a

kf
logkf

" #

þ b log 1( 1

k3
f

 !

þ b

k3
f

þ v

k6
f

¼ 0: (16)

In the constrained-swelling test, the stretches along the radial
and circumferential directions are constrained

k1 ¼ k2 , 1: (17)

The only deformation is along the axial direction, and is con-
trolled by the height of the top surface. For a sample with
initial thickness H swelling in a container with height h, the
stretches along the axial direction are uniform in equilib-
rium, which is given by

k3 ¼ kc ¼ h=H: (18)

By substituting Eqs. (17) and (18) into Eq. (13), we obtain

FIG. 4. Stress-stretch curves measured via uniaxial-compression test (solid
line) and the numerical fitting using the neo-Hookean model. The shear
modulus of dried SBR is estimated to be Go¼ 0.7 MPa.

FIG. 5. The drop of shear modulus with respect to swelling. The shear mod-
ulus of swelled samples (x in the figure) is measured via uniaxial compres-
sion test.
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r3X
kBT
¼GmX

kBT
1( a

2

% &
kc (

1

kc

# $
þ a log k3

kc

! "

þ b logðkc ( 1Þ þ b
kc
þ v

k2
c

: (19)

For example, in the fourth step of the confined swelling
experiment, as listed in Table I, kc ¼ 1:3 and r3 ¼ 0:5 MPa.
By solving Eqs. (16) and (19) with the experimental data
mentioned above, we can estimate the values of coefficients
v and b

v ¼ 0:29 and b ¼ 0:48: (20)

From matching with the experimental results, one sees that
the entropy of mixing is only about 50% of that predicted by
the original Flory-Huggins theory.

Finally, the model can be validated by comparing with
the data obtained from all steps in the multi-step constrained
swelling test (Fig. 6). The modeling results are in good
agreement with experiments in a relatively large range, i.e.,
1:2 < kc < 1:6. As a comparison, if we neglect the effect of
swelling on shear modulus and the modification of entropy
term (a ¼ 0 and b ¼ 1), the coefficient value of v can be
estimated via the free-swelling test result using Eq. (16) or
one step of the constrained-swelling test using Eq. (19).
None of these curves match the experiments (Fig. 7). In addi-
tion, if we chose to vary the coefficient v with the swelling
ratio to match the confined swelling tests, then the values of
v would be doubled from kc ¼ 1:7 (v ¼ 0:57) to kc ¼ 1:2
(v ¼ 1:38). Although this procedure is commonly practiced
to fit the Flory-Huggins model to experimental data,27 we do
not pursue it here.

V. CONCLUSIONS

The swelling pressure generated by the elastomer under
geometrical constraints, which is the essential for the sealing
applications, has been studied systematically through both
experiments and numerical simulations. The experimental
method developed in this work, i.e., the multi-step con-
strained-swelling test, can directly measure the swelling
pressure generated by an elastomer in solvent without requir-
ing any knowledge of the composition of the elastomer. In
the field theory developed in this work, the variation of elas-
tic modulus with swelling and the modification of entropy of
mixing relative to the initial Flory-Huggins theory have been
considered and shown to be important on the stiff elastomer
swelling in organic solvent. The theoretical predictions are
validated via comparing with experimental results and con-
sistency is observed both theory and experiments.
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