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A recent design of deformable lens mimics the human eye, adjusting its focal length in response to
muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a
voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the
dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize
the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation
using the model of ideal dielectric elastomer. The computational predictions agree well with
experimental data. We use the model to explore the space of parameters, including the prestretch of
the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator
relative to the lens. We examine how various modes of failure limit the minimum radius of
curvature. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821028]

I. INTRODUCTION

The worldwide adoption of mobile phones has high-
lighted a challenge: zooming—a rigid-body translation—
requires large space, and is unsuitable for cameras on mobile
phones. A potential solution is to mimic the human eye and
make the lens deformable. A recent design of deformable
lens comprises two layers of a prestretched dielectric elasto-
mer (Fig. 1).1 The annular part is sandwiched between con-
formal electrodes, and acts as an artificial muscle. The inner
part encloses a transparent liquid and acts as a lens. When a
voltage is applied between the electrodes, the dielectric elas-
tomer actuator expands and the lens deforms, adjusting its
focal length. Although deformable lenses actuated by other
means are being explored,2,3 deformable lenses actuated by
dielectric elastomers have several attributes, such as compact
structure, light weight, quietness, and low power.

The emergence of dielectric elastomers4–7 promises
muscle-like transducers for broad range of applications,
including actuators and sensors in robotics, prosthetics,
optics, and haptics.8–12 Also under development are genera-
tors for harvesting energy from human movements and
ocean waves.13–15 The achievable voltage-induced deforma-
tion of dielectric elastomers depends on how mechanical
loads are applied.16 Using an acrylic elastomer, experiments
have demonstrated voltage-induced expansion in area by
158% with a membrane biaxially prestretched and fixed to a
rigid frame,4 by 260% with a clamped membrane,17 by
488% with a membrane subject to biaxial dead loads,18 and
by 1689% with a membrane mounted on a chamber of air.19

The large deformation may be accompanied with rich non-
linear behavior of instability, which can be harnessed to
enhance dramatically the performance of transducers.20,21

The membranes may even exhibit electromechanical phase
transition.22–24 The development of the theory of dielectric
elastomers presents an unique opportunity in mechanics.25

This paper presents a computational model to aid the fur-
ther development of dielectric elastomer lenses. We calculate
the inhomogeneous deformation in the lens and the dielectric
elastomer actuator by formulating a nonlinear boundary-
value problem. We represent the strain-stiffening elastomer
with the Gent model26 and describe the voltage-induced de-
formation using the model of ideal dielectric elastomers.22

We compare computational results with experimental data.
The model enables us to explore the space of a large number
of parameters, such as the prestretch, the volume of the
liquid, and the size of the dielectric elastomer actuator. We
examine how various modes of failure limit the minimal
radius of curvature.

II. GOVERNING EQUATIONS

We formulate governing equations for the dielectric elas-
tomer actuator and the lens separately. We then make the dis-
placement and force continuous at the boundary between the
actuator and the lens. So far, no model has dealt with dielec-
tric elastomer lenses. Several groups have developed finite
element methods for dielectric elastomer actuators.27–32 Here,
we adapt a specialized numerical method taking advantage of
axisymmetric shape of the curved membranes.33–36 We focus
on the dielectric elastomer lens described in Ref. 1, although
the method of analysis can be used to model other designs of
dielectric elastomer lenses.37

The deformable lens can be in several states. In the ref-
erence state, Fig. 1(a), subject to no force or voltage, the
membrane is undeformed. The inside circular part corre-
sponds to the lens, radius A, and thickness H. The annular
part corresponds to the dielectric elastomer actuator of outer
radius B and is sandwiched between conformal electrodes. In
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the prestretched state, Fig. 1(b), the whole membrane is
stretched homogeneously and fixed to a rigid frame. The
inner radius becomes a, and the outer radius b. In the rest
state, Fig. 1(c), an incompressible liquid of volume 2v is
injected into the passive part, the radius of which becomes
arest. The apex of the lens reaches the height w0 off the mid-
dle plane, and the pressure in the liquid relative to the pres-
sure in the ambient is p0. Let q0 be the radius of curvature at
the apex in the rest state. The dielectric elastomer actuator
remains being flat. In the actuated state, Fig. 1(d), the dielec-
tric elastomer actuator is subject to a voltage U, expanding
area in the plane and decreasing its thickness to h. As a
result, the lens is squeezed so that the radius of curvature at
the apex changes to q.

The device is symmetric with respect to the middle
plane, so we only consider one layer of the membrane in the
calculation. In the reference state, Fig. 1(a), label each mate-
rial particle in the lens by its radial co-ordinated R in the
interval (0, A). In the subsequent states, Figs. 1(b)–1(d), the
lens deforms into axisymmetric shapes. Let the co-ordinate r
coincide with a radial direction, the co-ordinate z coincide
with the axis of symmetry, and the plane z ¼ 0 coincide with
the middle plane. In a deformed state, the material particle R
takes the position of co-ordinates z and r. The functions zðRÞ
and rðRÞ characterize the deformed state of the membrane.

Consider a differential material element between
two material particles R and Rþ dR. When the membrane is

in a deformed state, the particle R takes the position of
co-ordinates zðRÞ and rðRÞ, while the particle Rþ dR takes
the position of co-ordinates zðRþ dRÞ and rðRþ dRÞ. In the
undeformed state, the material element is a straight segment,
length dR. In the deformed state, the material element
becomes a curved segment of length k1dR, where k1 is the
longitudinal stretch. In a deformed state, let hðRÞ be
the slope of a membrane at material particle R. Write
dr ¼ rðRþ dRÞ % rðRÞ, so that

dr

dR
¼ k1 cos h: (1)

Similarly, write dz ¼ zðRþ dRÞ % zðRÞ, so that

dz

dR
¼ %k1 sin h: (2)

Consider in the undeformed state a circle of material
particles, perimeter 2pR. In the deformed state, these
material particles occupy a circle of positions, perimeter
2pr. The deformation causes the latitudinal stretch
k2 ¼ r=R. When the membranes are in the pre-stretched
state, Fig. 1(b), both stretches are homogeneous in the
membranes, k1 ¼ k2 ¼ a=A. When the membranes are in
a curved state, Figs. 1(c) and 1(d), however, the stretches
are inhomogeneous in the membranes and are described
by functions k1ðRÞ and k2ðRÞ. The volume enclosed by

FIG. 1. Schematics of the deformable
lens in successive states. (a) Reference
state in which the membrane is subject
to no force or voltage. (b) Prestretched
state in which the membrane is pre-
stretched homogeneously and fixed to
a rigid frame. (c) Rest state in which
the liquid is injected into the lens. (4)
Actuated state in which the curvature
of the lens changes with the voltage
applied to the dielectric elastomer
actuator.
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the curved membrane and the middle plane is
v ¼

Ð a
0 2pzrdr.

The conditions of equilibrium are (Appendix A)

d

dR

H

2
Rs1 sin h

" #
¼ k1k2Rp cos h; (3)

d

dR

H

2
Rs1 cos h

" #
% H

2
s2 ¼ k1k2Rp sin h; (4)

where the nominal stresses are given by

s1 ¼
@Wstretchðk1; k2Þ

@k1
; s2 ¼

@Wstretchðk1; k2Þ
@k2

: (5)

Here Wstretchðk1; k2Þ is the density Helmholtz free energy
of the elastomer.

At the apex of the lens, R ¼ 0, symmetry requires that

hð0Þ ¼ 0; rð0Þ ¼ 0: (6)

At the boundary of connection, R ¼ A, the membrane is con-
nected to the middle plane

zðAÞ ¼ 0; (7)

and the displacement and force is continuous with those of
the dielectric elastomer actuator

ðs1 cos hÞjA ¼ sconti; rðAÞ ¼ rconti: (8)

In the reference state, Fig. 1(a), label each material par-
ticle in the dielectric elastomer actuator by its radial co-
ordinated R in the interval (A, B). In the deformed states,
Figs. 1(b)–1(d), the dielectric elastomer actuator remains
flat, and the material particle R takes position of radius r.
The function rðRÞ describes the deformed state of the dielec-
tric elastomer actuator. The radial stretch is k1 ¼ dr=dR, and
the hoop stretch k2 ¼ r=R. The charge on the membrane is
Q ¼

Ð B
A 2pDrdr, where D is the electrical displacement. The

electrical field relates to the voltage as E ¼ U=h. The condi-
tions of equilibrium are (Appendix B)

ds1

dR
% s2 % s1

R
¼ 0; (9)

@Wðk1; k2;DÞ
@D

¼ E: (10)

Here, we have additional variable D in the density Helmholtz
free energy of the dielectric elastomer Wðk1; k2;DÞ, because
the dielectric elastomer stores both stretching energy and
electrostatic energy upon electrical loading. The nominal
stresses are given by

s1 ¼
@Wðk1; k2;DÞ

@k1
% U

H
Dk2; s2 ¼

@Wðk1; k2;DÞ
@k2

% U
H

Dk1:

(11)

The outer boundary of the dielectric elastomer actuator is
fixed to the rigid frame, so that

rðBÞ ¼ b: (12)

The inner boundary of the dielectric elastomer actuator is
continuous with the lens, so that

s1ðAÞ ¼ sconti; rðAÞ ¼ rconti: (13)

III. MATERIAL MODEL

To prescribe a specific form of the free energy function
Wðk1; k2;DÞ, we adopt the model of ideal dielectric elasto-
mers.22 This model assumes that the dielectric behavior of
the elastomer is liquid-like, unaffected by deformation. This
assumption is motivated as follows. An elastomer is a three-
dimensional network of long and flexible polymers, held
together by crosslinks. Each polymer chain consists of a
large number of monomers. Consequently, the crosslinks
negligibly affect the polarization of the monomers—that is,
the elastomer can polarize nearly as freely as a polymer
melt. The electric displacement D is linear in the electric
field E

D ¼ eE (14)

with the permittivity e being independent of the stretches.
Furthermore, the elastomer is assumed to be incompressible,
so that the stretch in the thickness direction of the membrane,
k3, related to k1and k2 as k3 ¼ 1=k1k2.

Inserting (14) into (10) and integrating with respect to
D, we obtain that

Wðk1; k2;DÞ ¼ Wstretchðk1; k2Þ þ
D2

2e
; (15)

The constant of integration, Wstretchðk1; k2Þ, represents the
free energy associated with the stretching of the elastomer.
Equation (15) is readily interpreted. In the model of ideal
dielectric elastomers, the free energy of the elastomer is the
sum of that due to stretching the network and that due to
polarization.

In an elastomer, each individual polymer chain has a
finite contour length. When the elastomer is subject to no
loads, the polymer chains are coiled, allowing a large number
of conformations. Subject to loads, the polymer chains become
less coiled. As the loads increase, the end-to-end distance of
each polymer chain approaches the finite contour length, and
the elastomer approaches a limiting stretch. On approaching
the limiting stretch, the elastomer stiffens steeply. To account
for this behavior, we adopt the Gent model26

Wstretchðk1; k2Þ ¼ %
l
2

Jlim log 1% k2
1 þ k2

2 þ k%2
1 k%2

2 % 3

Jlim

 !

;

(16)

where l is the shear modulus, and Jlim is a material constant
related to the limiting stretch. When the stretches are small,
k2

1 þ k2
2 þ k%2

1 k%2
2 % 3& Jlim, the Gent model recovers

the neo-Hookean model, Wstretchðk1; k2Þ ¼ ðl=2Þðk2
1 þ k2

2

þ k%2
1 k%2

2 % 3Þ. When the stretches approach the limit,
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k2
1 þ k2

2 þ k%2
1 k%2

2 % 3! Jlim, the Gent model stiffens
steeply.

IV. NOTES ON COMPUTATION

The governing equations in Sec. II result in a set of first-
ordinary differential equations. The lens requires four func-
tions: k1ðRÞ; rðRÞ; hðRÞ; zðRÞ. Equations (1) and (2) are in
desired form. Equations (3) and (4), along with the material
model in Sec. III, can be rewritten as

dh
dR
¼ % s2

s1

sin h
R
þ k1k2

s1

2p

H
; (17)

dk1

dR
¼

s2 cos h% s1 þ
ds1

dk2
ðk2 % k1 cos hÞ

R
ds1

dk1

: (18)

Consequently, the lens is governed by four differential Eqs.
(1), (2), (17), and (18), three boundary conditions (6) and
(7), and two conditions of continuity (8).

The dielectric elastomer actuator requires two functions:
k1ðRÞ; k2ðRÞ. Rewritten Eq. (9) with respect to material
model as

dk1

dR
¼

s2 % s1 þ
ds1

dk2
ðk2 % k1Þ

R
ds1

dk1

; (19)

First order derivative of k2ðRÞ gives

dk2

dR
¼ k1 % k2

R
; (20)

Consequently, the dielectric elastomer actuator is governed
by two differential Eqs. (19) and (20), one boundary condi-
tion (12) and two conditions of continuity (13).

The liquid is taken to be incompressible. As the lens
deforms, the volume of the liquid enclosed in the lens
remains constant at a prescribed value 2v, while the pressure
p in the liquid needs to be calculated. In the calculation,
however, we prescribe a pressure p and the displacement at
the connected boundary rðAÞ, and solve the boundary-value
problems governing the lens and the dielectric elastomer
actuator. The solution allows us to calculate a volume of
the liquid and the stresses in the lens and artificial at their
connection. We vary the pressure p and the displacement
rðAÞ until the volume of the liquid equals the prescribed
value 2v, and the forces balance at the connection between
the lens and the muscle, ðs1 cos hÞlens ¼ ðs1Þmuscle at R ¼ A.

V. COMPUTATIONAL RESULTS AND DISCUSSIONS

We first compare the computational results with the
experimental data extracted from Ref. 1. The parameters
reported in the experiment and also used in the calculations
are as follows. In the undeformed state, the thickness of the
VHB4905 membrane is H=2 ¼ 0:5 mm, the outer radius is B
¼ 5.25 mm, and the ratio between outer radius and inner

radius is B=A ¼ 2:76. In the pre-stretched state, the pre-
stretch is b=B ¼ 4. In the rest state, the radius of the lens is
arest ¼ 3:8 mm. The volume of liquid in the upper cap is
v ¼ 8:5 mm3.

In the actuated state, as the voltage ramps up, the diame-
ter of the lens decreases (Fig. 2). The computational results
agree very well with the experimental data. The stretch in
the experiment is far less than the limiting stretch of
VHB4905, so that the calculation is insensitive to the value
of Jlim; we set a representative value Jlim ¼ 120 throughout
the paper.16 Consequently, the only adjustable parameter
in the calculation is

ffiffiffiffiffiffiffi
l=e

p
, which is found to be 2:84

'107 V=m for the calculated diameters of the lens to best fit
the experimental values. The representative value of permit-
tivity is e ¼ 3:98' 10%11F=m,38 which gives the shear mod-
ulus l ¼ 32 kPa. This value of shear modulus slightly differ
from that reported in the literature due to vicous effects.18

We consider two modes of failure: loss of tension and
electrical breakdown. As the voltage ramps up, the dielectric
elastomer actuator relaxes. At a certain voltage, the hoop
stress vanishes at the outer boundary of the dielectric elasto-
mer actuator. We mark the calculated point of loss of tension
by the red circular dot (Fig. 2). In an actuated state, the
deformation in the dielectric elastomer actuator is inhomoge-
neous, the thickness of the membrane varies from point to
point, and the electric field is highest at the outer boundary
of the dielectric elastomer actuator. We set a constant electri-
cal breakdown strength EEB ¼ 200 MV=m,16 and mark the
calculated condition of electrical breakdown by a red cross
(Fig. 2). The experiment is conservative: the applied voltage
is well below the values that may cause loss of tension and
electrical breakdown.

Beyond the loss of tension, the membrane is expected to
form wrinkles. Our model, however, assumes that the mem-
brane remains flat and sustains compression. Consequently,
beyond the loss of tension, our model cannot predict the
behavior of the wrinkled membrane, but give unstable equi-
librium states assuming that the flat membrane remains flat.

FIG. 2. The comparison between the experimental data and computational
results. The blue triangles are the experimental data extracted from Ref. 1,
while the black curve represents the computational results. The red circular
dot corresponds to loss of tension. The red cross corresponds to electrical
breakdown.
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In particular, in Fig. 2, the solid line beyond the voltage
causing the loss of tension is not a valid prediction of the di-
ameter of the apex. The same caution applies to Figures 3–5.
In all these figures, useful solutions should stay within the re-
gime where the membrane remains in tension. We also
include some unstable solutions corresponding flat mem-
branes in compression, which will serve as a basis for

comparison when future interest arises to develop solutions
for wrinkled membranes.

As the voltage ramps up, the lens changes its shape,
decreasing the diameter, and increasing the height (Fig. 3).
We normalize the voltage as U=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ in calculations.

The labels LT and EB indicate loss of tension and electrical
breakdown. Also included is the dashed curve, which repre-
sents the spherical cap of the same radius as the radius of
curvature at the apex. This comparison indicates that taking
the shape of the membrane as a spherical cap to calculate the
size is a reasonable first approximation. A benefit of our
model, however, is that the exact shape of the lens is com-
puted. Instead of assuming a spherical lens, the exact aberra-
tions and hence optical performance can be computed, which
is of significant practical use.

The deformation of the membrane of the lens is inhomo-
geneous (Fig. 4). The differences of quantities in radial
direction and latitudinal direction are small, especially when
the muscle is under a low voltage. The inhomogeneity in
the dielectric elastomer actuator is much more pronounced

FIG. 3. Calculated shapes of the lens at several levels of voltage. The dashed
curve represents the spherical cap of the same radius as the radius of curva-
ture at the apex.

FIG. 5. Distributions of various quanti-
ties in the dielectric elastomer actuator
at several levels of voltage. (a) Radial
stress. (b) Hoop stress. (c) Radial
stretch. (d) Hoop stretch. (e) Electric
field.

FIG. 4. Distributions of various quanti-
ties in the membrane of the lens at sev-
eral levels of voltage. (a) Radial stress.
(b) Hoop stress. (c) Radial stretch.
(d) Hoop stretch.
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(Fig. 5). In particular, the hoop stress is inhomogeneous in
the actuator (Fig. 5(b)). Before the voltage is applied,
U=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0, the hoop stress in the actuator is slightly

inhomogeneous due to the additional pulling caused by the
injection of the liquid into the lens. In this state, the hoop
stress at the inner boundary of the actuator is slightly lower
than that at the outer boundary. When the applied voltage is
large, say, U=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:28, the voltage causes the mem-

brane to reduce the thickness and expands in area. At the
inner boundary, the lens represents a spring-like boundary
condition, and the stretch in both the radial and hoop direc-
tions can increase. At the outer boundary, however, the rigid
frame allows the radial stretch to increase, but keeps the
hoop stretch fixed. Consequently, when the effect of voltage
prevails, the hoop stress at the inner boundary of the actuator
is higher than that at the outer boundary. The loss of tension
first occurs at the outer edge at the threshold voltage about
U=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:237. We use two significant digits through-

out the paper, so that in the Fig. 5(b), we plot the curve at
U=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:24, where loss of tension already happens

at the outer boundary and extends towards the inner bound-
ary. The electric field at the outer boundary exceeds the elec-
trical breakdown strength at the normalized voltage of
U=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:28 (Fig. 5(e)).

We characterize the performance of the lens by studying
how the radius of curvature at the apex of the lens decreases
as the voltage ramps up (Fig. 6). A steeply descending curve
indicates a large change in the radius of curvature for a given
voltage. Each curve terminates by a mode of failure, which
we take to be either loss of tension or electrical breakdown.
The characteristic curve depends on the values of the design
parameters, such as the prestretch b=B, the volume of the liq-
uid v=a3, and the size of the dielectric elastomer actuator
B=A. In each figure of (a)–(c), we fix two of the design pa-
rameters and vary the third. As the prestretch increases to an
intermediate value (around 4), the maximum change of the
radius of curvature increases (Fig. 6(a)). At larger prestretch,
the improvement on actuation is limited. At a very large pre-
stretch b=B ¼ 6, the maximum actuation drops sharply,
caused by electrical breakdown. The characteristic curve
also depends on the volume of the liquid (Fig. 6(b)). One can
choose a volume of liquid to satisfy a specific functional
requirement. For example, in the experiment, the volume of
liquid is chosen such that the curvature changes in the range
similar to that of human eyes.1 The improvement of the max-
imum actuation is quite limited with a much larger size of
muscle (Fig. 6(c)). The value B=A( 3 is appropriate, which
makes the device compact.

The maximum absolute actuation qmin=a and the maxi-
mum relative actuation qmin=q0 are presented in Tables I and
II, with different combinations of prestretch b=B and volume
of liquid v=a3 and a fixed value of the size of dielectric elas-
tomer actuator B=A. Bolditalic data points represent maxi-
mum actuation limited by electric breakdown, while the
others represent maximum actuation limited by loss of ten-
sion. The absolute actuation determines the range that the de-
formable lens can undergo while the relative actuation
reflects the deforming capability. For instance, the focal
length of a lens can change from 100 m to 110 m, the

absolute change 10 m is large but the stretching is only
110/100¼1.1; on the contrast, a lens with focal length chang-
ing from 2 m to 4 m have higher deforming capability but
shorter range. The absolute actuation and relative actuation
of the deformable lens independently vary with the variable

FIG. 6. The radius of curvature at the apex of the lens as a function of the
applied voltage. (a) Effect of prestretch, b=B. (b) Effect of the volume of the
liquid, v=a3. (c) Effect of the size of the dielectric elastomer actuator, B=A.

TABLE I. Absolute change of radius of curvature at the apex qmin=awith

different combinations of prestretch b=Band volume of liquid v=a3. The size
of the dielectric elastomer actuator is B=A ¼ 2:76.

Absolute change of radius of curvature qmin=a

Volume v=a3 b=B¼2 b=B¼3 b=B¼4 b=B¼5 b=B¼6

0.07 3.35 3.14 2.72 2.67 6.03

0.16 1.81 1.63 1.56 1.51 2.95

0.22 1.38 1.34 1.30 1.24 2.20
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parameters. For example, as the volume increases, the maxi-
mum absolute actuation decreases for a given prestretch
while the maximum relative actuation increases.

Our computational model can aid the designers of tuna-
ble lenses. For the particular type of tunable lenses that
mimic human eyes, our calculations and the above discus-
sions indicate optimal parameters: prestretch around
b=B ¼ 4, volume of liquid v=a3¼0:16, and the size of the
dielectric elastomer actuator around B=A¼3. These parame-
ters are close to those used in the experiment in Ref. 1. The
large prestretch of 4 keeps the membrane in tension during
actuation, and lowers the voltage needed for actuation. The
size of the dielectric elastomer actuator reflects a compro-
mise to ensure the performance of the lens and keep the
whole device compact. Given this choice of parameters, our
calculation indicates that the voltage range used in the
experiment offers a significant safety margin (Fig. 2). The
computational model can also be adapted to explore other
designs of tunable lenses, where mimicking human eyes may
not be the object. For instance, in the design described in
Ref. 37, a transparent conductor is used as electrodes, so that
the dielectric elastomer actuator coincides with one side the
lens, leading to a more compact device. In almost any
design, many parameters can be varied, including the volume
of the liquid, the refractive index of the liquid, the materials
for the dielectric and the conductor, the prestretches of both
sides of the lens, and the resting radii of the two sides of the
lens. The computational model will enable the designer to
explore the large parameter space to achieve the desired
object and avert failure.

VI. CONCLUDING REMARKS

We present a computational model of deformable
lenses. The model predictions agree well with the reported
experimental data. We show that the artificial muscle under-
goes significantly inhomogeneous deformation, which may
lead to failure by electrical breakdown and loss of tension at
the outer boundary. The experiments carried out in Ref. 1,
however, are well within the regime of safe operation. We
use the model to calculate the characteristic curve of the per-
formance of the lens, namely, the radius of curvature of the
lens as a function of the voltage. The characteristic curve
depends on a number of design parameters, including the
prestretch, the volume of liquid, and the size of the dielectric
elastomer actuator. We calculate how loss of tension and
electrical breakdown limit the maximum absolute change

and relative change of the radius of curvature. It is hoped
that the computational model will aid the further develop-
ment of deformable lenses.
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APPENDIX A: EQUILIBRIUM EQUATIONS OF THE LENS

The equilibrium in the lens requires the work done by
the liquid pressure pdv equal to the change of the free energy
of the lens dFI. The free energy of the lens is

FI ¼
ðA

0

pHWstretchðk1; k2ÞRdR: (A1)

Upon loading pressure, the free energy changes as

dFI¼pH

ðA

0

@Wstretchðk1;k2Þ
@k1

dk1þ
@Wstretchðk1;k2Þ

@k2
dk2

" #
RdR:

(A2)

Denote s1 ¼ @Wstretchðk1;k2Þ
@k1

and s2 ¼ @Wstretchðk1;k2Þ
@k2

.
From Eqs. (1) and (2), we obtain the associated variation

in the longitudinal stretch

dk1 ¼
ddr

dR
cos h% ddz

dR
sin h; (A3)

Inserting (A3) and dk2 ¼ dr
R into (A2), we obtain

dFI ¼ pH

ðA

0

s1 cosh
ddr

dR
% s1 sinh

ddz

dR
þ s2

dr

R

" #
RdR

¼ pHðs1R coshdrÞjA0 % pHðs1 sinhRdzÞjA0

þ pH

ðA

0

%dðs1R coshÞ
dR

drþ dðs2R sinhÞ
dR

dzþ s2dr

& '
dR:

(A4)

The work done by the liquid pressure is

pdv ¼ 2pp

ðA

0

r
dr

dR
dzþ z

dr

dR
dr þ zr

ddr

dR

" #
dR

¼ 2ppðzrdrÞjA0 þ 2pp

ðA

0

r
dr

dR
dz% r

dz

dR
dr

" #
dR:

(A5)

Equating dFIin (A4) to pdv in (A5), we obtain the equilib-
rium equations

d

dR

H

2
Rs1sin h

" #
¼ k1k2Rp cos h; (A6)

TABLE II. Relative change of radius of curvature at the apex qmin=q0with
different combinations of prestretch b=Band volume of liquid v=a3. The size
of the dielectric elastomer actuator is B=A ¼ 2:76.

Relative change of radius of curvature qmin=q0

Volume v=a3 b=B¼2 b=B¼3 b=B¼4 b=B¼5 b=B¼6

0.07 0.31 0.29 0.25 0.24 0.55

0.16 0.34 0.31 0.30 0.29 0.57

0.22 0.37 0.36 0.34 0.33 0.59
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d

dR

H

2
Rs1 cos h

" #
% H

2
s2 ¼ k1k2Rp sin h; (A7)

and boundary conditions
H

2
Rs1 cosh%pzr

" #
drjA0 ¼0

andðs1 sinhÞdrjA0 ¼0: (A8)

APPENDIX B: EQUILIBRIUM EQUATIONS OF THE
DIELECTRIC ELASTOMER ACTUATOR

The equilibrium in the dielectric elastomer actuator
requires the electrical work done by the battery UdQ equal to
the change of the free energy of the dielectric elastomer actua-
tor dFII. The free energy of the dielectric elastomer actuator is

FII ¼
ðB

A
2pHWðk1; k2;DÞRdR: (B1)

Upon electrical loading, the free energy changes as

dFII ¼2pH

ðB

A

@Wðk1;k2;DÞ
@k1

dk1þ
@Wðk1;k2;DÞ

@k2
dk2

"

þ@Wðk1;k2;DÞ
@D

dD

#
RdR: (B2)

Denote s1 ¼ @Wðk1;k2;DÞ
@k1

% U
H Dk2 and s2 ¼ @Wðk1;k2;DÞ

@k2
% U

H Dk1.

Inserting dk1 ¼ ddr
dR and dk2 ¼ dr

R into (B2), we obtain

dFII ¼ 2pH

ðB

A
s1 þ

U
H

Dk2

" #
ddr

dR
þ s2 þ

U
H

Dk1

" #
dr

R

&

þ @Wðk1; k2;DÞ
@D

dD

'
RdR

¼ 2pH

ðB

A
s2 % s1 þ

U
H

Dðk1 % k2Þ
& '

=R

"&

% d s1 þ
U
H

Dk2

" #
=dR

#
drþ @Wðk1; k2;DÞ

@D
dD

'
RdR

þ 2pH s1 þ
U
H

Dk2

" #
Rdr

& '((((
B

A

: (B3)

The work done by the battery is

UdQ¼2pU
ðB

A
r

dr

dR
dDþD

dr

dR
drþDr

ddr

dR

" #
dR

¼2pUðDrdrÞjBAþ2pU
ðB

A
r

dr

dR
dD%r

dD

dR
dr

" #
dR: (B4)

Equating dFII in (B3) to UdQ in (B4), we obtain the equilib-
rium equations

ds1

dR
% s2 % s1

R
¼ 0; (B5)

@Wðk1; k2;DÞ
@D

¼ k1k2
U
H
; (B6)

and boundary conditions s1drjBA ¼ 0: (B7)
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