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Consider a layer of a gel attached to a rigid substrate, immersed in a solvent, and swelling in the
thickness direction. The flat surface of the gel remains stable if the swelling ratio is small, but becomes
unstable if the swelling ratio is large. While creases have been commonly observed, wrinkles have
also been observed under certain conditions. We compare the critical conditions for the onset of
creases and wrinkles by using a nonlinear field theory of gels. The critical swelling ratio for the onset
of creases is calculated by using a finite element method, and that for wrinkles is calculated by using
an analytical method. We find that the critical swelling ratio for the onset of creases is significantly
lower than that for wrinkles. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818943]

I. INTRODUCTION

Long and flexible polymer chains can be covalently
crosslinked to form a three-dimensional network, an elasto-
mer. When the network absorbs a solvent, the aggregate is
known as an elastomeric gel. Associated with the absorption
of the solvent, the network may swell many times the vol-
ume of the dry polymer. Swelling is usually under constraint,
often leading to instability. For example, as a gel absorbs
water, the surface swells more than the interior, resulting in
instability (Fig. 1). As water migrates in further, the surface
pattern coarsens and eventually disappears. Instability also
occurs readily when a gel is subject to an applied force (Fig.
2). For a starch gel prepared in a tray, a stiff skin layer forms
on the top surface of the gel due to the evaporation of water.
When the gel is bent to compress the top surface, multiple
wrinkles form. By contrast, when the same gel is bent to
compress the bottom surface (without a skin layer), a single
crease forms. For a gel attached to a rigid substrate and swel-
ling in the thickness direction, the surface of the gel remains
flat when the swelling ratio is small, but forms creases when
the swelling ratio is large.1–6

Here, we compare the critical conditions for the onset of
creases and wrinkles by using a nonlinear field theory of
elastomeric gels. Both creases and wrinkles set in by deviat-
ing from a state of homogenous deformation (Fig. 3).
Wrinkles deviate from the homogenous state by a field of
strain infinitesimal in amplitude, but finite in space. Creases
deviate from the homogenous state by a field of strain large
in amplitude, but infinitesimal in space.7 We analyze the
onset of wrinkles by using an analytical method, and analyze
the onset of creases by using finite-element methods. We
find that the critical swelling ratio for the onset of creases is
significantly lower than that for wrinkles. This theoretical

finding is consistent with experimental observations. While
creases are readily observed during swelling, we are unaware
of any experimental evidence of wrinkles localized on the
surface during swelling, except for incidences in which the
gel has thickness-graded properties.

This paper is organized as follows. Section II summa-
rizes the nonlinear field theory of elastomeric gels. An ana-
lytical method is presented in Sec. III to predict the critical
condition for the onset of wrinkles. In Sec. IV, the inhomo-
geneous deformation of the gel in the creased state is calcu-
lated by the finite element method, and the critical condition
for the onset of creases is determined. The critical conditions
for wrinkles and creases are compared and discussed in
Sec. V, followed by concluding remarks in Sec. VI.

II. A NONLINEAR FIELD THEORY OF GELS

Here, we summarize the nonlinear field theory of elasto-
meric gels.8 A gel is a polymer network swollen with a

FIG. 1. Swelling-induced instability in a gel. The gel was synthesized using
dimethylaminoethylmethacrylate and acrylamide as monomers, N,N0-meth-
ylenebisacrylamide as crosslinkers, and ammonium persulfate as initiators.
(a) The as-fabricated gel, diameter !3 cm. (b) During swelling in water, the
surface of the gel formed creases. (c) As the migration of water progressed,
the surface pattern coarsened.

a)Author to whom correspondence should be addressed. Electronic mail:
suo@seas.harvard.edu. Tel.: þ1 617 4953789. Fax: þ1 617 4960601.
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solvent (Fig. 4). When the gel is in the reference state, which
we take to be the dry polymer, an element of the network
occupies a location of coordinate X. Let dVðXÞ be an ele-
ment of volume, dAðXÞ an element of area, and NðXÞ the
unit vector normal to the element of area. In a swollen state,
the element X of the network moves to a new location of
coordinate x. The function xðXÞ specifies the deformation of
the gel. The deformation gradient is defined as

FiKðXÞ ¼
@xiðXÞ
@XK

: (2.1)

Let C be the nominal concentration of the solvent in the
gel—that is, CdVðXÞ is the number of solvent molecules in
the element of volume. The function CðXÞ specifies the dis-
tribution of the solvent in the gel. The two functions xðXÞ
and CðXÞ together specify the state of the gel.

Let siKðXÞ be the field of nominal stress, BiðXÞ be the
nominal body force, and TiðXÞ be the nominal traction on
the surface. The balance of forces requires that

@siKðXÞ
@XK

þ BiðXÞ ¼ 0 (2.2)

in the volume of the gel, and

siKðXÞNKðXÞ ¼ TiðXÞ (2.3)

on the surface of the gel, where the traction is prescribed.
The gel is submerged in an environment, which may

contain many species of molecules, as well as the solvent
molecules. The setup is such that the gel and the environ-
ment only exchange the solvent. When the gel equilibrates
with the environment, the chemical potential of the solvent
is the same everywhere, which we denote as l. Our analysis
assumes that both the temperature and the chemical potential
of the solvent are held constant. Let W be the nominal
Helmholtz free energy density of the gel (i.e., the Helmholtz
free energy of the gel divided by the volume of the dry poly-
mer). Considering the Helmholtz free energy of the gel and
that of the environment, a combined free energy is defined as
a function of the deformation gradient and the chemical
potential of the solvent, Ŵ ¼ W & lC. In a state of thermo-
dynamic equilibrium, the change in the combined free
energy equals the work done by the stresses

dŴ ¼ siKdFiK: (2.4)

The equality holds for arbitrary variation of the all nine com-
ponents of the deformation gradient. The gel is characterized
by a function ŴðF; lÞ. The condition of equilibrium (2.4) is
equivalent to

FIG. 3. Schematics of two types of surface instability: (a) wrinkles and (b)
creases.

FIG. 4. Each element of the network is marked by its coordinate X, when
the network is in the reference state, which is taken to be the dry polymer.
When the network absorbs the solvent and swells, the element of the net-
work moves to a new location of coordinate x. The field of deformation,
xðXÞ, and the field of concentration of the solvent, CðXÞ, together describe
the state of the gel.

FIG. 2. Bending-induced instability in a popular Chinese food, Liang Fen
(a starch gel). A hot solution was poured into a large tray and was left at
room temperature for hours to form a gel. On the top surface of the gel, a
thin stiff skin formed due to the evaporation of water. (a) When the gel was
bent to compress the top surface, multiple wrinkles formed. (b) When the
gel was bent to compress the bottom surface, a single crease formed.
(Courtesy of Denian Zhuang).
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siK ¼
@ŴðF; lÞ
@FiK

: (2.5)

This expression gives the equations of state once the function
ŴðF; lÞ is prescribed.

As a specific material model, the function ŴðF; lÞ is
prescribed as follows. The free energy is the sum of three
contributions9

ŴðF; lÞ ¼ Wstretch þWmix & lC: (2.6)

The free energy of stretching follows the Gaussian-chain
model:

Ws ¼
1

2
NkBT½FiKFiK & 3& 2 logðdet FÞ(; (2.7)

where N is the number of polymer chains per volume of dry
polymer, kBT is the absolute temperate in the unit of energy.
The free energy of mixing follows the Flory-Huggins
model:10,11

Wmix ¼ kBT C log
XC

1þ XC
þ vC

1þ XC

! "
; (2.8)

where X is the volume of a solvent molecule, and v is a
dimensionless parameter measuring the enthalpy of mix-
ing. It is commonly assumed that the volume of the gel
changes only by absorption or desorption of the solvent
molecules

det F ¼ XCþ 1: (2.9)

A combination of (2.6)–(2.9) gives the equations of state

siK ¼NkBTðFiK & HiKÞ þ
kBT

X
ðdet FÞlog 1& 1

det F

# $!

þ 1þ v
det F

& l
kBT
ðdet FÞ(HiK; (2:10)

where HiKdet F ¼ @ det F=@FiK ¼ 1
2 eijkeKLMFjLFkM.

The kinematic equation (2.1), the conditions of force
balance (2.2), and the equations of state (2.10), along with
boundary conditions, constitute a boundary-value problem
that governs the state of equilibrium of a gel submerged in
an environment. The governing equations take the same
form as those for compressible hyperelastic solids.

Now consider a layer of a gel attached to a rigid sub-
strate (Fig. 5). As fabricated, the gel is partially swollen with
an isotropic initial swelling ratio, k1 ¼ k2 ¼ k3 ¼ kpre.
Immersed in a solvent-containing environment, the gel
swells further in the thickness direction. We assume the
thickness of the layer to be much smaller than the in-plane
dimensions and ignore the edge effect. The constrained swel-
ling of the gel layer results in an equal-biaxial compressive
stress, while the stress in the thickness direction vanishes.
For a given kpre, the swelling ratio in the thickness direction,
k3, is a function of the chemical potential12

l
kBT
¼ NX

k2
pre

k3 &
1

k3

# $
þ log 1& 1

k2
prek3

 !

þ 1

k2
prek3

þ v

ðk2
prek3Þ2

: (2.11)

The environment is taken to be a pure solvent, in which the
chemical potential is set to be zero, l ¼ 0. The equilibrium
swelling ratio k3 decreases as any one of the three parame-
ters, kpre, NX, and v, increases (Fig. 5).

FIG. 5. A gel is attached to a rigid sub-
strate. The thickness of the gel is much
smaller than the in-plane dimensions.
In a homogeneous state, the gel is con-
strained by the substrate in the in-plane
dimensions, and swells in the thickness
direction. The amount of swelling k3

depends on the crosslink density NX,
the Flory-Huggins parameter v, and
the prestretch kpre.
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III. CRITICAL CONDITION FOR THE ONSET
OF WRINKLES

An analysis has been carried out by Kang and Huang13 to
determine the condition for the onset of wrinkles for the case
k1 ¼ k2 ¼ 1. Here, we carry out the analysis for a gel with in-
plane pre-stretches. In this analysis, the control parameters
(NX, v, and the pre-stretches) are fixed, and the homogeneous
state is perturbed with a field of small deformation. Consider
a state of finite deformation specified by the deformation
x0

i ðXÞ, deformation gradient F0
iKðXÞ, nominal stress s0

iKðXÞ,
and traction T0

i ðXÞ. Perturb the state of finite deformation
with a state of infinitesimal deformation

xi ¼ x0
i þ ~xi; (3.1)

FiK ¼ F0
iK þ ~FiK; (3.2)

siK ¼ s0
iK þ ~siK; (3.3)

Ti ¼ T0
i þ ~Ti: (3.4)

By Eqs. (2.1)–(2.3), we have

~FiK ¼
@~xiðXÞ
@XK

; (3.5)

@~siK

@XK
¼ 0; (3.6)

~siKNK ¼ ~Ti: (3.7)

This set of Eqs. (3.5)–(3.7) is linear in the incremental fields.
Expanding Eq. (2.5) in the Taylor series and keeping

only the linear term, we obtain that

~siK ¼
@2Ŵ

@FiK@FjL

~FjL ¼ CiKjLðF0; lÞ ~FjL; (3.8)

where CiKjL is the tensor of tangent moduli. Further assume
that the finite deformation before the perturbation is homoge-
nous, so that CiKjL is a constant tensor. The tangent moduli
depend on NX, v, and prestretches, as listed in Appendix A.
A combination of (3.5), (3.6), and (3.8) gives that

CiKjL
@~xjðXÞ
@XL@XK

¼ 0: (3.9)

The infinitesimal incremental displacement ~xðXÞ is governed
by this linear partial differential equation, along with the ho-
mogeneous boundary conditions (namely, the increment in
the traction vanishes on the surface of the gel, and the incre-
ment in the displacement vanishes at the interface between
the gel and the rigid substrate). This analysis leads to an
eigenvalue problem. The trivial solution corresponds to a ho-
mogeneous state, while the nontrivial solutions correspond
to wrinkled states. The characteristic equation determines
the critical condition for the onset of wrinkles, and the asso-
ciated eigenvector describes a mode of deformation. The am-
plitude of the deformation, however, is not determined by
this analysis.

For a two-dimensional problem, with geometry and
external loading invariant in the direction normal to
ðX1;X3Þ-plane, the general solution to the linearized
boundary-value problem is given in the Stroh formalism
(Appendix A). We then assume that the wavelength is small
compared with the thickness of the gel, so that the gel is
taken to be semi-infinite in the analysis. Solution to this
problem is obtained by using the method of analytic func-
tions (Appendix B). The critical condition for the onset of
wrinkles is written in terms of the homogeneous swelling
ratios as

ðk2
1 þ k2

3Þ
2

k1k3
& 4k2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ f

k2
3 þ f

s

¼ 0 (3.10)

with

f ¼ 1

NX
1

k1k2k3 & 1
& 2v

k1k2k3

# $
þ 1: (3.11)

For a given prestretch k1 ¼ k2 ¼ kpre, the critical swelling
ratio in the thickness direction, k3, is obtained from (3.10),
with which the critical chemical potential can be found by
(2.11). When the in-plane prestretch k1 ¼ k2 ¼ 1, (3.10)
recovers the critical condition obtained by Kang and
Huang.11 An alternative analysis was presented by Kang14

using the method of Fourier transform, which predicted the
same critical condition for wrinkling of a swollen gel layer
under an equal-biaxial pre-stretch.

By combining (3.10) and (2.11) and setting the chemical
potential to be zero for the equilibrium swelling, the critical
condition for the onset of wrinkles is obtained as a relation
between the three parameters: NX, v, and kpre. For each v,
the critical pre-stretch decreases with increasing NX (Fig. 6).
In this calculation, kpre is the pre-stretch in two lateral direc-
tions, which may be induced by swelling or mechanical
stretching (compression). For large NX (!1), the critical
pre-stretch approaches 0.666 as predicted by Biot15 for rub-
ber under equi-biaxial compression. In this case, the polymer

FIG. 6. Critical prestretch for the onset of wrinkles. The gel is stable against
wrinkling, when the prestretch is greater than the critical value. For large
NX, the critical prestretch approaches 0.666 (the dashed line) as predicted
by Biot (1963) for rubber under equal-biaxial compression.
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network is highly crosslinked so that it cannot absorb much
solvent and hence behaves like a rubber in the dry state.

IV. CRITICAL CONDITION FOR THE ONSET OF
CREASES

A crease sets in when the deformation deviates from the
homogenous state by a field of strain large in amplitude, but
infinitesimal in space. The critical condition for the onset of
the crease cannot be predicted by perturbing the homogene-
ous state with a field of small deformation. In this section,
we present two numerical methods to predict the onset of
creases in a gel attached to a rigid substrate.

The first method is based on an energy consideration.16

Consider a gel in a homogeneous state and a creased state (Fig.
7). The free energy of the swollen gel in the homogenous state
can be calculated analytically as described in Sec. II. The
creased state is created by imposing a boundary condition with
prescribed horizontal displacements that bring part of the sur-
face OA’ into contact with OA. The length of AA’, L, is set to
be small compared to the thickness of the gel H, say,
L=H ) 1=100, so that the depth of the crease is the only rele-
vant length scale in the problem. Let DU be the free energy per
unit thickness of the creased gel minus that in the state of ho-
mogenous swelling. A dimensional consideration dictates that

DU ¼ kBTL2

X
fCðkpre;NX; vÞ; (4.1)

where fCðkpre;NX; vÞ is a dimensionless function to be calcu-
lated. When DU > 0, the homogenously swollen state has
lower free energy. When DU < 0, the creased state has lower

free energy. The critical condition is, thus, established by
setting DU ¼ 0, namely,

fCðkpre;NX; vÞ ¼ 0: (4.2)

We note that the critical condition (4.2) is independent of the
prescribed crease size (L) or the gel thickness H.

We calculate the free energy of the creased gel by using
a finite element method to equilibrate the gel.12 Fig. 7(b)
shows one plot of the function fCðkpre;NX; vÞ for kpre ¼ 1:55
and v ¼ 0:1. The function approaches zero at a critical value
of NX, which predicts the critical crosslink density. For a gel
with the crosslink density lower than the critical value, the
homogeneous swollen state is unstable giving rise to surface
creases that lower the free energy of the swollen gel.
Similarly, for given parameters NX and v, a critical pre-
stretch may be predicted. For given NX and kpre, a critical
value for v may be predicted.

The above method cannot continue the calculation
beyond the critical condition. Alternatively, we use a second
method, introduced recently by Cai et al.17,18 and Jin et al.,19

to simulate the initiation and growth a crease. A small defect
is introduced to specify the location of the crease. In particu-
lar, a quarter of a circle of a small radius, a, is placed on the
surface of the swollen gel in the finite element model (Fig. 8).
To minimize the effect of the size of the defect, the defect is
made much smaller than the layer thickness H, say
a=H ) 1=100. Moreover, to resolve the field close to the tip
of the crease and to minimize the effect of mesh size, the size
of the finite elements around the defect is made much smaller
than the defect. Fig. 8(b) shows the equilibrated state with a
deep crease obtained by the finite element method.12 The
depth of the crease at the equilibrium state (l¼ 0) is deter-
mined from the contact length, which is plotted as a function
of NX in Fig. 8(a) for the same kpre and v as in Fig. 7(b) The
depth of crease decreases with increasing NX. Beyond a criti-
cal value of NX, the depth is essentially zero. The critical
value for NX obtained from the energy method (Fig. 7(b)) is
marked in Fig. 8(a), which is consistent with the transition
point from positive crease depth to zero crease depth.

Therefore, both methods can be used to predict the criti-
cal condition for the onset of creases. While the energy
method is more convenient to quantitatively determine the
critical value, the second method enables post-instability
analysis to predict the profile of deep creases as shown in
Fig. 8(b). It is observed in Fig. 8(b) that the solvent concen-
tration is the lowest in the vicinity of the crease tip. This is
consistent with the previous calculations by Kang and
Huang,14 who showed that the in-plane compressive stress is
relatively low at the crease tip. With the inhomogeneous
fields of solvent concentration and stress, the total free
energy of the creased state is lower than the homogeneous
state of swelling. Further analysis of the post-instability
creasing behavior is left for future studies.

V. COMPARISON AND DISCUSSION

The critical condition for the onset of wrinkles in a biax-
ially constrained swollen gel is given by the combination of

FIG. 7. Finite-element calculation of creasing of a gel attached to a rigid
substrate. (a) Schematics of a homogeneous state of the swollen gel and a
creased state. (b) The deference between the energy of the creased state and
that of the homogeneous state is plotted as a function of NX. (v¼ 0.1 and
kpre ¼ 1.55).
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(2.11) and (3.10), and that of creases is given in (4.2). Fig.
9(b) compares the critical prestretch kpre, plotted as a func-
tion of NX for different values of v. The surface of a swollen
gel is unstable if the pre-stretch is less than the critical value.
The critical prestretch for creasing is larger than that for
wrinkling. In other words, it takes a larger prestretch to stabi-
lize the swollen gel against creasing than it takes against
wrinkling. For both creasing and wrinkling, the critical pre-
stretch kpre decreases with increasing NX and v. This can be
understood as follows: the equilibrium swelling ratio of the
gel in the homogeneous state decreases with increasing NX
or v, and as a result the prestretch kpre required to stabilize
the swollen gel decreases. As shown in Fig. 6, for some NX
and v the critical prestretch is less than 1, meaning that the
swollen gel is stable without any prestretch but becomes
unstable if the prestretch is instead compressive (kpre < 1).
In the limiting case, when NX or v is very large, the polymer
network cannot absorb much of the solvent and thus behaves
like a dry elastomer. As predicted in the previous stud-
ies,15,16 for an elastomer under equi-biaxial compression, the

critical conditions for the onset of wrinkles and creasing are
kpre ¼ 0:666 and kpre ¼ 0:749, respectively.

Experimentally, the critical conditions for surface insta-
bility of swollen gels are often reported as the critical thick-
ness ratio between the swollen gel and the gel in the initial
state. Denote the ratio of the two thicknesses as, g ¼ k3=kpre.
Figure 9(c) plots the critical ratio gc for both wrinkling and
creasing as a function of NX for different v. Clearly, the crit-
ical swelling ratio required for creasing is considerably lower
than for wrinkling in all cases. In general, the critical swel-
ling ratio depends on the material parameters of the gel (NX
and v). The reported critical swelling ratios from experi-
ments range from around 2 to 3.7.1,20,21

Wrinkling and creasing as two types of surface instabil-
ity have also been studied for elastomers under mechanical
compression.7,15,21 It was found that the critical compressive
strain for the onset of creases is lower than that for the onset
of wrinkles. The connection between the two types of insta-
bility has been studied recently by Cao and Hutchinson.22

By a post-bifurcation analysis, they showed that the wrin-
kling mode is highly unstable and imperfection sensitive.
Consequently, a tiny initial imperfection can trigger the
onset of wrinkling instability at a lower compressive strain
and the wrinkles quickly collapse into a crease. As such
wrinkling was suggested as one pathway to formation of
creases in elastomers. Similar connection may be expected
for wrinkling and creasing in swollen gels. Indeed, numerical
simulations by Kang and Huang13 showed that an initial
undulation of the surface of a gel may evolve into wrinkles
and collapse into creases during swelling. However, analysis
of imperfection sensitivity for surface instability in swollen
gels has not been reported.

Finally, we note that the swollen gel is assumed to be in
a homogeneous state before the onset of surface instability in
the present study. As a result, the critical condition is

FIG. 9. Comparison of the critical conditions for the onset of wrinkles and
creases. (a) A gel is attached to a rigid substrate in a state of isotropic pre-
stretch kpre, and swells in the thickness direction to a stretch of k3. (b) The
critical prestretch varies with NX and v. (c) The critical swelling ratio,
gc ¼ k3=kpre, varies with NX and v. The red solid lines are the critical condi-
tions for the onset of creases, and the blue dashed lines are the critical condi-
tions for the onset of wrinkles.

FIG. 8. Finite-element simulation of the formation of a crease from an initial
defect. (a) The equilibrium contact length at the creased region is plotted as
a function of NX. (v¼ 0.1 and kpre ¼ 1.55) The red dashed line denotes the
critical value of NX obtained from the energy method in Fig. 6. (b) Contour
plot of the solvent concentration XC around the crease.
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independent of any length scale. In practice, however, the
surface instability may be regulated by a length scale. For
example, in Fig. 1, the transport kinetics defines a length
scale that increases with time. In Fig. 2(a), the thickness of
the skin layer dictates the wrinkle wavelength. A length scale
can also be introduced by considering the effect of surface
tension.23 Experimentally, a wide range of surface instability
patterns have been observed by controlling the gradient of
crosslink density in the polymer network of gel films,24 in
which case the length scale is defined by the graded material
property. The intriguing instability patterns call for further
studies that integrate mechanics with soft matter physics.

VI. CONCLUDING REMARKS

We calculate the critical conditions for the onset of
wrinkles and creases in a swollen gel attached to a rigid sub-
strate. The critical swelling ratio for the onset of creases is
found to be considerably lower than that of wrinkles. This
theoretical finding is consistent with experimental observa-
tions. While creases are readily observed during swelling,
we are unaware of any experimental evidence of wrinkles
localized on the surface during swelling, except for inciden-
ces in which the gel has thickness-graded properties. It is
hoped that the approaches described here will be useful for
determining the critical conditions for the onset of creases
and wrinkles in other configurations and materials.
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APPENDIX A: STROH FORMALISM

Equation (3.9) is a set of three second-order linear par-
tial differential equations, the form of which is identical to
that of anisotropic elasticity. Consequently, the present prob-
lem can be solved by adapting the Stroh formalism of aniso-
tropic elasticity.25,26 The solution of the partial differential
equations (3.9) is given by an arbitrary function of a linear
combination of the variables X1 and X3

~xkðX1;X3Þ ¼ akf ðX1 þ pX3Þ; (A1)

where ak is a vector, p is a number, and f ðzÞ is an analytic
function of the variable z. Inserting (A1) into (3.9), one
obtains that

Ci1k1 þ pðCi1k3 þ Ci3k1Þ þ p2Ci3k3

& '
ak

d2f ðzÞ
dz2

¼ 0: (A2)

We are interested in nontrivial solutions in that d2f ðzÞ=dz2 6¼ 0
and not all components of ak vanish. Consequently, (A2) con-
stitutes an eigenvalue problem, with ak as an eigenvector,
and p as an eigenvalue determined as a root of the sixth-order
polynomial equation

det½Ci1k1 þ pðCi1k3 þ Ci3k1Þ þ p2Ci3k3( ¼ 0: (A3)

Eshelby et al.26 proved that Eq. (A3) has no real root, so
that the roots for the equation are complex conjugate pairs.
We denote pj (j¼ 1, 2, 3) as the three distinct roots with posi-
tive imaginary part. The eigenvector ak corresponding to pj

is denoted by Akj. The field ~xkðX1;X3Þ is real-valued.
Therefore, a general expression for the displacement can be
written as

~xi ¼ 2 Re
X3

j¼1

AijfjðzjÞ

2

4

3

5; (A4)

where zj ¼ X1 þ pjX3.
Inserting (A4) into Eq. (3.8), we find that the incremen-

tal nominal stress ~siK , and the incremental resultant force on
an arc ~Ri (the medium is kept on the left-hand side as an ob-
server travels in the positive direction of the arc) can be rep-
resented as

~si3 ¼ 2 Re
X3

j¼1

Lijf
0
jðzjÞ

2

4

3

5; (A5)

~si1 ¼ &2 Re
X3

j¼1

Lijpjf
0
jðzjÞ

2

4

3

5; (A6)

~Ri ¼ &2 Re
X3

j¼1

LijfjðzjÞ

2

4

3

5: (A7)

The incremental resultant force is defined by an integral,
~RiðX1;X3Þ ¼

Ð
Cð~si1n1 þ ~si3n3ÞdC, where the integration is

carried out from infinity to the point ðX1;X3Þ, and n1 and n3

are the components of the unit normal to C. By comparing
(A5) and (A6) with (3.8), the matrix L is obtained as

Lia ¼
X3

k¼1

½Ci3k1 þ paCi3k3(Aka: (A8)

Given the tensor CiKjL, Eq. (A4) gives the form of the
solution to the partial differential equations (3.9) without
invoking any boundary conditions. The three functions
f1ðz1Þ, f2ðz2Þ, and f3ðz3Þ are to be determined by the boundary
conditions.

We now calculate the tangent moduli CiKjL for the gel.
Taking derivative of (2.10), we obtain the tensor of tangent
moduli

CiKjL ¼ NkBT
)
dijdKL þ ðf& wÞH0

iLH0
jK þ wH0

jLH0
iK

*
; (A9)

with

f ¼ 1

NX
1

J & 1
& 2v

J

# $
þ 1; (A10)

and
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w ¼ J

NX
log 1& 1

J

# $
þ 1

J & 1
& v

J2
& l

kBT

# $
; (A11)

where J ¼ detF0. The field of finite deformation before per-
turbation is homogeneous, and the principal stretches are in
the directions coinciding with X1;X2, and X3. Consequently,
F0¼diagðk1;k2;k3Þ, H0¼diagð1=k1;1=k2;1=k3Þ, J¼k1k2k3,
and the tangent moduli (A9) reduce to the following nonzero
elements:

C1111 ¼NkBT 1þ f

k2
1

 !
; C2222 ¼NkBT 1þ f

k2
2

 !
;

C3333 ¼NkBT 1þ f

k2
3

 !
; (A12)

C1212 ¼ C2121 ¼ C1313 ¼ C3131 ¼ C3232 ¼ C2323 ¼ NkBT;

(A13)

C1122 ¼ C2211 ¼
NkBT

k1k2
w; C1133 ¼ C3311 ¼

NkBT

k1k3
w;

C2233 ¼ C3322 ¼
NkBT

k2k3
w; (A14)

C2112 ¼ C1221 ¼
NkBT

k1k2
ðf& wÞ;

C3113 ¼ C1331 ¼
NkBT

k1k3
ðf& wÞ;

C3223 ¼ C2332 ¼
NkBT

k2k3
ðf& wÞ:

(A15)

We next solve the eigenvalue problem in the Stroh for-
malism. The ðX1;X3Þ-plane is a mirror plane, so that the in-
plane deformation and antiplane deformation are decoupled.
We focus on the in-plane deformation described by two
analytic functions f1ðz1Þ and f3ðz3Þ, with z1 ¼ X1 þ p1X3 and
z3 ¼ X1 þ p3X3. The complex numbers p1 and p3 are deter-
mined by (A3), which is specialized as

1þ f

k2
3

 !
p2 þ 1þ f

k2
1

 !0

@

1

Aðp2 þ 1Þ ¼ 0: (A16)

The two roots with positive imaginary part of the above
equation are

p1 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

3ðk
2
1 þ fÞ

k2
1ðk

2
3 þ fÞ

s

; p3 ¼ i: (A17)

All the 3* 3 matrices introduced before reduce to 2* 2
matrices for the in-plane deformation. Keeping the same
notation, we obtain that

A11 ¼ i; A13 ¼ i; A31 ¼ &

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ f

k2
3 þ f

s

; A33 ¼ &
k3

k1
;

(A18)

L11 ¼ &2NkBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

3ðk
2
1 þ fÞ

k2
1ðk

2
3 þ fÞ

s

; L31 ¼ &iNkBT
k2

1 þ k2
3

k1k3

 !

;

L13 ¼ &NkBT 1þ k2
3

k2
1

 !

; L33 ¼ &2iNkBT
k3

k1
: (A19)

APPENDIX B: CRITICAL CONDITION FOR THE ONSET
OF WRINKLES

The three functions f1ðz1Þ, f2ðz2Þ, and f3ðz3Þ are to be
determined by the boundary conditions. We now derive the
critical condition for the onset of wrinkles using the one-
complex-variable method of Suo.27 Let z be a complex vari-
able of the form z ¼ X1 þ qX3, with q being an arbitrary
complex number with a positive imaginary part. Write

fðzÞ ¼ ½f1ðzÞ; f2ðzÞ; f3ðzÞ(T : (B1)

The function fðzÞ describes the wrinkled state. The surface
of the gel (X3 ¼ 0) is traction-free, so that (A7) reduces to

LfðX1Þ þ "L"f ðX1Þ ¼ 0: (B2)

This equation sets the boundary condition for the function
fðzÞ. It can be shown that this condition is equivalent to that
by setting ~si3 ¼ 0 everywhere on the surface (n1 ¼ 0 and
n3 ¼ 1).

The boundary-value problem is solved as follows.
Assume that the gel occupies the lower half plane
(X3 + 0). Because no singularity is present in the gel, LfðzÞ
is a function analytic in the lower half plane. Consequently,
"L"f ðzÞ is a function analytic in the upper half plane. By the
theorem of analytic continuation, the boundary condition
(B2) requires that both functions be analytic in the entire
plane. The wrinkles are disturbance localized on the surface
of the gel, so that the analytic functions vanish as jzj ! 1.
The only function analytic in the entire plane and vanishing
as jzj ! 1 is the function being zero everywhere.
Consequently, the solution to the boundary-value problem
(B2) is

LfðzÞ ¼ 0: (B3)

Equations analogous to (B3) have been used to study surface
wave in anisotropic elastic materials (e.g., Lothe and
Barnett28).

Equation (B3) is an eigenvalue problem. A nontrivial
solution of fðzÞ exists if and only if

det L ¼ 0: (B4)

For the in-plane deformation of a swollen gel, a combination
of (A19) and (B4) gives a single solution (3.10). Denote e as
the eigenvector solved from the eigenvalue problem Le ¼ 0.
The wrinkled state is given as

fðzÞ ¼ wðzÞe; (B5)

where wðzÞ is an arbitrary scalar-valued function.
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Equation (B4) gives the critical condition for the onset
of wrinkles, while (B5) gives the shape of the wrinkles. This
analysis assumes that the gel occupies a half space, and the
critical condition is found to be the same for wrinkles of any
shape. For the matrix L specified by (A19), the critical con-
dition (B4) reduces to

ðk2
1 þ k2

3Þ
2

k1k3
& 4k2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ f

k2
3 þ f

s

¼ 0; (B6)

and the eigenvector is

e ¼ ½2k2
3; &ðk

2
1 þ k2

3Þ(
T : (B7)
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