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A poroelastic material can imbibe solvent and swell. When the material swells inhomogeneously or
swells under external constraints, stresses can develop inside the material. The stresses can trigger
mechanical instabilities in the material or even break the material, which have been often observed
in experiments. In this paper, we study the wrinkling instability of a circular poroelastic plate, in
the process of solvent molecules migrating into the plate from the edge. The critical conditions for
the initiation and disappearance of wrinkles in the plate are presented. VC 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4811753]

A poroelastic material can imbibe solvent and swell.
Stresses will develop when the material swells under exter-
nal constraints. For a free-standing homogeneous poroelastic
material, in equilibrium state, the swelling ratio is uniform
and the stress in the material is zero. In transient state, how-
ever, due to the inhomogeneous swelling, the stresses are
finite in the material, which can trigger mechanical instabil-
ities in the material or even break the material.1–4

A variety of instability patterns in a free-standing poroe-
lastic material, induced by the transient stress field, have been
observed in experiments.5–9 The instability patterns usually
disappear when the porous material reaches equilibrium state.
Fig. 1 shows an example of the swelling process of a free-
standing spherical gel. Water molecules can migrate into the
gel through the surface and cause swelling. In the transient
state, the surface swells more than the interior, resulting in
instability patterns. As water migrates in further, the surface
pattern coarsens and eventually disappears.

In this paper, by adopting Biot’s poroelasticity
theory,10–12 we first calculate how stress fields evolve with
time in a circular poroelastic plate, when solvent migrates
into it through the edge. By perturbing the transient fields in
the plate, we further compute the critical conditions of wrin-
kling instability in the plate. Ignoring the influence of the
wrinkled morphology of the circular plate on the process of
the diffusion of water, we can also determine the time of the
disappearance of wrinkles in the plate.

A poroelastic plate with radius a and thickness h is
sketched in Fig. 2. In the initial state, the poroelastic plate is
taken to be homogeneous and stress free with c0 being the
concentration of solvent in the plate (i.e., the number of sol-
vent molecules per unit volume of the material) and l0 being
the chemical potential of the solvent in the plate. The poroe-
lastic plate is then submerged into a solvent-containing
environment with chemical potential l. If l > l0, solvent
migrates into the material and the material swells. If l < l0,
solvent leaves the material and the material shrinks.

We assume both the top and bottom surfaces of the plate
are impermeable to the solvent. In experiments, this assumption

is reasonable when thin impermeable layers are coated on the
top and bottom surfaces of the plate. The solvent can only
migrate into the plate through its edge. Before instability hap-
pens, the deformation of the poroelastic plate is axisymmetric
and time dependent. Therefore, we can write the displacement
in radial direction as ur ¼ urðr; tÞ, the displacement in vertical
direction as uz ¼ uzðr; tÞ and the displacement in hoop direc-
tion is zero, namely, uh ¼ 0. By adopting small deformation
assumption, we can obtain the strain field in the plate

erðr; tÞ ¼
@urðr; tÞ
@r

; (1a)

ehðr; tÞ ¼
urðr; tÞ

r
; (1b)

ezðr; tÞ ¼
@uzðr; tÞ
@r

: (1c)

The concentration of the solvent in the poroelastic plate is
also a time dependent field, cðr; tÞ. The number of solvent
molecules is conserved, so that

@c

@t
þ @ðrJÞ

r@r
¼ 0; (2)

where J is the flux of the solvent in the radial direction.

FIG. 1. Swelling process of a spherical gel. Water migrates into the gel from
the surface and causes the swelling. In the transient state, compressive
stresses develop in the outer part of the gel, which induce complex mechani-
cal instability patterns on the surface. The instability patterns disappear,
when the spherical gel reaches equilibrium state.a)shqcai@ucsd.edu
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The poroelastic plate is in mechanical equilibrium in the
process of solvent migration, so that stress field satisfies

@rr

@r
þ rr % rh

r
¼ 0; (3)

where rr is radial stress and rh is hoop stress.
The poroelastic plate, however, is not in diffusive equi-

librium, so that the chemical potential of the solvent in the
gel is a time-dependent field, lðr; tÞ. The migration of the
solvent in the gel is taken to obey Darcy’s law

J ¼ % j

gX2

! "
@l
@r
; (4)

where j is the permeability of the poroelastic material, g the
viscosity of the solvent, and X the volume per solvent
molecule.

Without losing generality, we assume that the increase
in the volume of the poroelastic material is entirely due to
the additional solvent molecules absorbed, namely,

er þ eh þ ez ¼ Xðc% c0Þ: (5)

We can write the equations of state of a poroelastic ma-
terial by the following:11

rr ¼ 2G er þ
!

1% !
ðer þ eh þ ezÞ

# $
% l% l0

X
; (6a)

rh ¼ 2G eh þ
!

1% !
ðer þ eh þ ezÞ

# $
% l% l0

X
; (6b)

rz ¼ 2G ez þ
!

1% !
ðer þ eh þ ezÞ

# $
% l% l0

X
: (6c)

In the above equations, G is the instantaneous shear modulus
of the poroelastic material, ! is Poisson’s ratio of the poroelas-
tic material in equilibrium state, and the quantity ðl% l0Þ=X
is known as the pore pressure in the theory of poroelasticity.

Detailed explanation of these quantities can be found in
Ref. 11.

As the solvent migrates into or out of the poroelastic
plate, the stress in the vertical direction is always zero, i.e.,
rz ¼ 0. A combination of all the above equations gives the
two controlling equations in terms of the radial displacement
urðr; tÞ and the solvent concentration cðr; tÞ

@c

@t
¼ D

r

@

@r

r@c
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! "
; (7a)
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r@r

# $
¼ X

@c

@r
; (7b)

where D ¼ Gj=ð1% 2!Þg. Eqs. (7a) and (7b) can be solved
numerically, subject to the boundary conditions, lða; tÞ ¼ l,
rrða; tÞ ¼ 0 and urð0; tÞ ¼ 0, and initial conditions cðr; 0Þ
¼ c0, lðr; 0Þ ¼ l0 and urðr; 0Þ ¼ 0. It is noted that both the
controlling equations and boundary conditions are linear and
the quantity l% l0 is the only loading parameter in this
problem. Consequently, stress, strain, and concentration
fields in the plate all linearly depend on the chemical poten-
tial l% l0. To present results, we normalize radial stress,
hoop stress, and concentration field in the plate as
rrX=ðl% l0Þ, rhX=ðl% l0Þ, and GX2ðc% c0Þ=ðl% l0Þ.
We also normalize the time as Dt=a2.

Fig. 3 plots the concentration of the solvent, the radial
stress and hoop stress in the plate for several different times.
The Poisson’s ratio ! is assumed to be 0:3 in the calculation.
To interpret the results in Fig. 3, we assume chemical poten-
tial of solvent in the environment l is larger than the initial
chemical potential of solvent in the plate l0, so the poroelas-
tic plate swells with solvent migrating into the material.
As shown in Fig. 3(a), the concentration of solvent in the
plate increases with time till equilibrium. As illustrated in
Fig. 3(b), the radial stress in the plate is tensile and reaches
maximum in the center of the plate. The magnitude of the ra-
dial stress in the center of the plate increases initially and
then drops to zero in equilibrium state. The tensile radial
stress may cause the fracture of the material. The hoop stress
is compressive, close to the edge of the plate, but tensile in
the middle of the plate (Fig. 3(c)). The compressive hoop
stress may trigger wrinkling instabilities in the plate. In the
following, we use linear stability analysis to calculate the
critical conditions of mechanical instability in the poroelastic
plate.

We denote the out-of-plane deflection in the plate as
w ¼ wðr; hÞ. The F€oppl-von K"arm"an equations,13 governing
the deflection of the circular plate, can be written as

KD2w ¼ rrh
@2w

@r2
þ rhh

@w

r@r
þ 1

r2

@2w

@h2

! "
; (8)

in which K ¼ Eh3=12ð1% v2Þ is the bending stiffness and
the differential operator is defined as D ¼ @2=r2 þ @=r@r
þ @2=r2@h2. The associated boundary conditions are given
as r2@2w=@r2 þ !ðr@w=@r þ @2w=@h2Þ ¼ 0, r@ðDwÞ=@r
þð1% !Þ@2ð@w=r@hÞ=@r@h ¼ 0 at the free edge r ¼ a, and
w ¼ 0, @w=@r ¼ 0 at the center r ¼ 0.

To solve Eq. (8), we set w ¼ f ðrÞcosðmhÞ and substitute
it into Eq. (8), we obtain that

FIG. 2. A poroelastic plate, with radius a and thickness h, contacts with a
solvent-containing environment. Initially, the poroelastic plate contains the
solvent with the concentration c0 and chemical potential l0. The chemical
potential of the solvent in the environment is l. The top and bottom surfaces
of the plate are both impermeable. The poroelastic plate can only exchange
the solvent with the environment through the edge.
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KD2
r f ¼ rrh

d2f

dr2
þ rhh

df

rdr
þ m2f

r2

! "
; (9)

where Dr ¼ d2=dr2 þ d=rdr % m2=r2. The corresponding
boundary conditions for f ðrÞ become r2d2f=dr2 þ !rdf=dr
% !m2f ¼ 0, r3d3f=dr3þ r2d2f=dr2% r½1þ ð2% !Þm2'df=dr
þð3% !Þm2f ¼ 0 at the free edge r ¼ a, and f ¼ 0, df=dr
¼ 0 at the center r ¼ 0. In Eq. (9), rr and rh are the in-plane
radial stress and hoop stress, evolving with time as shown in
Figs. 3(b) and 3(c). Eq. (9) along with the boundary condi-
tions constitutes an eigenvalue problem. For a fixed chemical
potential l% l0, Eq. (9) can find nontrivial solutions only at
specific times, which correspond to the critical conditions of
wrinkling instabilities of the poroelastic plate.

Fig. 4 plots the critical time for wrinkling instability of
the plate as a function of the chemical potential of the sol-
vent in the environment. The effect of the aspect ratio of the
plate a=h and the shear modulus G on the critical conditions
of wrinkling instability can be eliminated by normalizing
chemical potential as ðl% l0Þða=hÞ2=GX. As illustrated in

Fig. 4, the critical time depends on the mode of wrinkling
instability, m. If solvent migrates into the poroelastic plate
and cause the swelling, namely, l > l0, wrinkling modes
with m ( 2 may occur. If solvent migrates out of the plate and
cause the shrinking, i.e., l < l0, wrinkling modes with m ¼ 0
or 1 are expected. For a range of the chemical potential (Fig.
4(b)), %15 < ðl% l0Þða=hÞ2=GX < 21, wrinkling instability
will not be triggered by the transient stress field in the poroe-
lastic plate. Outside the range, at each chemical potential, two
critical times can be found for each instability mode. The first
critical time corresponds to the initiation of wrinkling instabil-
ities of a particular mode, and the second one corresponds to
the vanishing of wrinkles, if the influence of the wrinkled
morphology on the field evolution is neglected.

In a summary, the paper studies the conditions of wrin-
kling instability in a poroelastic plate, induced by the migra-
tion of solvent. Depending on the chemical potential
difference of the solvent in the environment and in the
poroelastic plate at the initial state, wrinkling instabilities of
different modes may be triggered by the transient stress field.
We also obtain a particular range of chemical potential, in
which no mechanical instabilities can be triggered by the
transient stress field, in the process of solvent migration.

Kai Li acknowledges the support from the 2010 doctoral
startup foundation, and postdoctoral foundation from Anhui
University of Architecture. Shengqiang Cai acknowledges
the startup funds from the Jacobs School of Engineering at
University of California, San Diego.

FIG. 3. The distribution of (a) concentration, (b) radial stress and (c) hoop
stress in the plate for several times.

FIG. 4. Critical times for wrinkling instabilities of different modes in
the poroelastic plate. For a range of chemical potential, %15 < ðl% l0Þ
ða=hÞ2=GX < 21, mechanical instability will not be induced by the transient
stress field in the process of solvent migration. Outside the range, two criti-
cal times can be found for each mode of wrinkling instability. The first time
corresponds to the initiation of wrinkles and the second one corresponds to
the disappearance of the wrinkles. (b) enlarges (a) for short time period.
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