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Inhomogenous viscoelastic deformation is analyzed for a membrane of dielectric elastomer
mounting on a rigid circular ring and subject to a combination of pressure and voltage. The
membrane is assumed to be capable of large deformation, and the viscoelasticity of the
membrane is represented by a nonlinear spring-dashpot model. It is found that when the applied
pressure and voltage are small, the dielectric membrane gradually evolves to an equilibrium state.
While if the applied pressure and voltage are large, the membrane cannot reach equilibrium state
and electromechanical instability may happen with the time. The evolution of different fields in
the dielectric elastomer membrane and its profile are calculated in this article. The model can
be potentially used to explore time dependent behaviors of dielectric elastomeric devices.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807911]

I. INTRODUCTION

Dielectric elastomer consists of a thin and soft membrane
and two compliant electrodes coated on its surfaces. When
subject to a voltage, the membrane of dielectric elastomer
reduces thickness and expands area. In 2000, Pelrine et al.
reported that the electrically actuated strain in the dielectric
elastomers can reach greater than 100%.1 Since then, large de-
formation and kinetic processes in dielectric elastomers have
been intensively studied.2–14 More recently, by careful loading
design, Huang et al. experimentally realized a very large
voltage-actuated strain, up to 488% expansion in area.15 Li
et al. observed giant voltage-induced expansion in dielectric
elastomer through harnessing the snap-through instability.16

In addition to large deformation, dielectric elastomers have
many other attractive features, such as fast response, low cost,
light weight, high energy density, and so on. Nowadays,
dielectric elastomers have been developed as diverse intelli-
gent devices, such as actuators, tunable lens, energy harvest-
ers, and refreshable displays.17–22

Most dielectric elastomers are rubbery polymer. The
behaviors of these polymers are usually stretch-rate depend-
ent. For instance, in uniaxial tension tests, the stress-stretch
curves can strongly depend on stretch-rate.23,24 Recent experi-
ments have also shown that the fracture energy of VHB
(a kind of acrylic foam tapes fabricated by 3M Company), the
most extensively investigated dielectric elastomer material,
also changes dramatically with stretch-rate.25 These stretch-
rate dependent behaviors are usually interpreted as the conse-
quence of the viscoelasticity of the polymers,26 which may
have significant influence on the performances of dielectric
elastomer devices.27,28 For example, as demonstrated by
Plante and Dubowsky, at high velocities, the viscoelasticity of
the elastomer can reduce the actuating forces of the devices.29

To investigate the interplay of viscoelasticity and elec-
tric field in a dielectric elastomer membrane undergoing in-
homogeneous deformation, a theoretical model is developed
in this article. Based on the model, the time-dependent
behavior of a dielectric elastomer is calculated numerically.
The evolution of the physical fields and the profiles of the
elastomeric membrane with the time are also presented.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

Figure 1 illustrates the mechanical model of a dielectric
elastomer membrane. In the undeformed state, the membrane
is of a flat circular shape with radius A and thickness H, Fig.
1(a). The membrane is then homogeneously prestretched and
clamped on the rigid ring of radius a, Fig. 1(b). In the
deformed state, the membrane is inflated by a fixed pressure
p and a fixed voltage U across its thickness. Let the z-axis
coincide with the axis of symmetry and r-axis coincide with
the radial direction. The plane z¼ 0 locates at the plane of
rigid ring. Consider the particle R in the undeformed state. It
moves to a new place (r(R,t), z(R,t)) in the deformed state,
Fig. 1(c). Here, t is the time variable. The longitudinal
stretch is defined as k1 ¼ dl=dR and the latitudinal stretch
k2 ¼ r=R. Here, dl is the length of the material element in
the longitudinal direction in the deformed state. In this arti-
cle, the dielectric elastomer is modeled as the viscoelastic
material. Therefore, all the physical fields are time dependent
in spite of the constant loadings. Denote h(R,t) as the slope
of the membrane at the particle R. Then we have dr ¼ dlcos h
and dz ¼ "dlsin h and so that

@r

@R
¼ k1cos h; (1)

@z

@R
¼ "k1sin h: (2)
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Let r1ðR; tÞ be the true longitudinal nominal stress, and
r2ðR; tÞ the true latitudinal nominal stress. Considering that
the viscoelastic relaxation time of the elastomer is usually
much larger than the time scale set by the inertial effect of
the membrane, we neglect the inertial effect in our analysis.
For quasi-static equilibrium processes, force balance in z-
direction gives that

" 1

R

@

@R

r1

k1
Rsin h

! "
þ k1k2

p

H
cosh ¼ 0 (3)

and force balance in latitudinal direction gives that

1
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! "
" r2

Rk2
þ k1k2

p

H
sin h ¼ 0: (4)

In the electrical equilibrium state, the voltage between the
two electrodes equals to the voltage of the source U, and the
electric field is E ¼ ðUk1k2Þ=H.

Then we consider the boundary conditions. At the edge,
the membrane is clamped. That is,

rðA; tÞ ¼ a; zðA; tÞ ¼ 0: (5)

The membrane will deform into axisymmetric shape and the
symmetry requires that

hð0; tÞ ¼ 0; rð0; tÞ ¼ 0: (6)

III. VISCOELASTIC MODEL OF DIELECTRIC
ELASTOMER MEMBRANE

The viscoelastic behavior of the dielectric elastomer
membrane is represented by a rheological model of springs
and dashpots. Here, we adopt a rheological model of two
parallel units:26 one unit consists of a spring of the shear
modulus la and the other unit consists of a spring of the

shear modulus lb and a dashpot of the viscosity g (Fig. 2).
By employing this rheological model, the two stretches of
the dielectric elastomer membrane k1 and k2 are assumed to
be the net stretches of both units. Let n1 and n2 be the
stretches in the dashpot. Then the stretches of the spring
which is connected to the dashpot in series can be deter-
mined as ke

1 ¼ k1n
"1
1 and ke

2 ¼ k2n
"1
2 : Treat n1 and n2 as two

internal variables. By employing the non-equilibrium ther-
modynamic theory26,30 and the neo-Hookean material model,
the viscoelasticity model of the dielectric elastomer can be
written as
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1 " k"2

1 k"2
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1n
2
2k
"2
1 k"2
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(8)

In Eq. (7), e is the permittivity of the dielectric elastomer
membrane and eE2 is the Maxwell stress. From Eqs. (7) and
(8), we can conclude that, except of the permittivity e, all the
material parameters of the dielectric elastomer can be meas-
ured by routine mechanical tests, such as uniaxial creep or
relaxation, which is the consequence of ideal dielectric elas-
tomer assumption.3

In the presented model, the rate of deformation in the
dashpot is described by the two components n"1

1 dn1=dt and
n"1

2 dn2=dt and the dashpot is modeled as Newtonian fluid. It
is noted here that this kinetic model satisfies the thermody-
namic inequality if g > 0.

In this article, we focus on the viscoelastic relaxation of
the dielectric elastomer subject to a combination of pressure
and voltage. To simplify the problem, without losing any sig-
nificance, we assume that the time scale for the prestretch
process is much shorter than the characteristic time of mate-
rial relaxation. Under this assumption, we have the initial
conditions as

n1ðR; 0Þ ¼ 1; n2ðR; 0Þ ¼ 1: (9)

FIG. 1. Mechanical model of the dielectric elastomer membrane: (a) unde-
formed state; (b) prestretched state; and (c) deformed state. The dot in each
state denotes the position of a particular material particle.

FIG. 2. Viscoelastic model of the dielectric elastomer.
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Equation (9) means that at the initial time t ¼ 0, the load is
carried by both springs and the dashpot does not deform.
This assumption is true for the elastomers having long relax-
ation time but might not be precise for the elastomers having
short relaxation time.

IV. NOTES ON SOLVING TECHNIQUE

The governing equations presented in Secs. II and III
can be rewritten into two sets. The first set is a system of
first-order ordinary differential equations with respect to spa-
tial coordinate R for the four functions: rðR; tÞ, zðR; tÞ,
hðR; tÞ, and k1ðR; tÞ and the second set is a system of first-
order ordinary differential equations with respect to time t
for the two functions: n1ðR; tÞ and n2ðR; tÞ. A combination of
Eqs. (3) and (4) along with Eq. (7) gives

dh
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¼ " r2

r1

k1

k2

sin h
R
þ k2

1k2

r1

p

H
; (10)
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where
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Equations (1), (2), (10), and (11) construct the first set
of the first-order ordinary differential equations. Rewriting
Eq. (8), we obtain the second set of the first-order ordinary
differential equations as
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(13)

By using the initial conditions (9), we can determine all the
physical fields at t0 ¼ 0 from the first set of the first-order or-
dinary differential equations by using the numerical shooting
method.31 By choosing a proper time step Dt, the stretches in
the dashpot n1 and n2 at the next time step t1 ¼ t0 þ Dt can
be obtained from Eq. (13) by using the improved Euler
method. Subsequently, the physical fields at the present time
step t1 can be completely determined from the first set of the
first-order ordinary differential equations by using the shoot-
ing method. Repeating this procedure by continuously

increasing the time, all the physical fields can be determined
step by step.

V. RESULTS AND DISCUSSION

Two examples are presented in this section to illustrate
the viscoelastic behaviors of the dielectric elastomer mem-
brane when subject to pressure and voltage. In the calcula-
tion, we assume that there is no prestretch in the dielectric
elastomer, namely a/A¼ 1. We also set la ¼ lb ¼ l=2. To
plot the results, we normalize the pressure as p=ðlH=AÞ, the
voltage as U/H/(l/e)1/2, the coordinate as R=A, and the time
as t=tv. Here, tv ¼ g=lb is known as the viscoelastic relaxa-
tion time.

We first consider the case that the dielectric elastomer
membrane is only subject to pressures. Figs. 3(a)–3(d) plot
the evolution of the longitudinal stretch k1, the apical height
z, the longitudinal true stress r1, and the stretch in the dash-
pot n1, at the center of the membrane, when it is subject to
different pressures while the voltage keeps zero. At the
short-time limit, the deformation of the dashpot in Fig. 2 is
zero and the elastic properties of the dielectric elastomer can
be represented by two parallel springs; at the long-time limit,
the spring connected with the dashpot is fully relaxed and
the stress in it is zero. The elastic properties of the dielectric
elastomer can be represented by a single spring, la in Fig. 2.
It is also well known that no equilibrium state can be found
when the pressure exerted on a circular neo-Hookean mem-
brane is beyond a critical value compared to its modulus.
Therefore, the elastomeric membrane may be stable for the
short-time limit but unstable for the long-time limit, even
under a constant pressure. This expected trend is illustrated
in Figs. 3(a)–3(d). When the pressure is small, for example,
p=ðlH=AÞ¼ 0.8 and p=ðlH=AÞ¼ 0.9, all the physical quan-
tities finally evolve into constant values. For example, under
the pressure p=ðlH=AÞ¼ 0.9, both the longitudinal and lati-
tudinal stretches change little when t=tv > 20. However,
when the pressure is large, the elastomeric membrane is ini-
tially stable but become unstable with the evolution. For
instance, mechanical equilibrium state cannot be found in
the membrane for p=ðlH=AÞ¼ 1.0 when t=tv > 12, which
indicates the membrane lose mechanical stability after a cer-
tain period of evolution. In practice, considering the mem-
brane is made of VHB with tv¼ 65.5 s,32 we predict that the
membrane will become unstable after 786 s under the pres-
sure p/(lH/A)¼ 1.0. To confirm our calculated results, we
also plot both short-time limit and long-time limit in Figs.
3(a)–3(d) by using different methods described in Ref. 7.

In Fig. 4, we plot the distributions of the longitudinal
and latitudinal stretches at several different times with two
different pressures p=ðlH=AÞ ¼ 0.9 and 1.0. In the whole
evolution process, both longitudinal and latitudinal stretches
increase with time and the largest stretches appear at the
apex of the membrane. Fig. 5 shows the deformed shapes of
the membrane at different times when subjected to
p=ðlH=AÞ ¼ 0.9 and 1.0, respectively. The deformation and
the shape of the membrane evolve dramatically faster, under
the pressure p=ðlH=AÞ ¼ 1.0 and the membrane finally loses
mechanical stability.
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FIG. 4. Evolution of longitudinal stretch
and latitudinal stretch in the dielectric
elastomer membrane with the two differ-
ent pressures.

FIG. 3. Evolution of (a) longitudinal
stretch, (b) apical height, (c) true stress,
and (d) stretch of the dashpot at the cen-
ter of the membrane under several differ-
ent pressures. In the figure, horizontal
dash lines represent equilibrium solu-
tions for short-time limit and long-time
limit.
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The second example studied here is the dielectric mem-
brane subject to different voltages U while the pressure keeps
constant p/(lH/A)¼ 0.5. Figure 6 plots the evolution of the
longitudinal stretch k1, the apical height z, the longitudinal true
stress r1, and the true electric field E at the center of the mem-
brane. Similarly, for small voltages, for example, U/H/(l/e)1/2

¼ 0.1 and 0.2, all the physical quantities finally evolve
into equilibrium values, while for larger voltages, U/H/(l/e)1/2

¼ 0.3 and 0.4, no electromechanical equilibrium state can be
found after a period of time. Figure 6(c) shows that the true
longitudinal stress at the center is not a monotonic increasing
function of the time. This may be due to the electromechanical
coupling effect in the dielectric elastomer membrane.

Fig. 7 plots the distribution of longitudinal and latitudinal
stretches of the dielectric elastomeric membrane at several
different times, when the applied voltage U/H/(l/e)1/2¼ 0.2
and 0.3, respectively. Subject to the voltage U/H/(l/e)1/2¼ 0.2,

the dielectric elastomeric membrane approaches electro-
mechanical equilibrium state when t=tv > 20, while no
electromechanical equilibrium state can be found for U/H/
(l/e)1/2¼ 0.3 when t=tv > 20.

Figure 8 shows the deformed shapes of the membrane at
different times when the membrane is subject to U/H/(l/e)1/2

¼ 0.2 and 0.3, respectively. It shows that at the same time, the
membrane under U/H/(l/e)1/2¼ 0.3 has a much larger apical
height than that under U/H/(l/e)1/2¼ 0.2. When the applied volt-
age U/H/(l/e)1/2¼ 0.2, the shape of the dielectric elastomeric
membrane changes little from t=tv ¼ 10 to t=tv ¼ 40. When
the applied voltage U/H/(l/e)1/2¼ 0.3, the shape of the
dielectric elastomeric membrane changes very dramatically from
t=tv ¼ 10 to t=tv ¼ 20. After t=tv ¼ 22, no electromechanical
equilibrated shape of the dielectric membrane can be found.

Recently, viscoelastic deformations of dielectric elastomer
under electromechanical loads have been clearly observed in a

FIG. 5. Evolution of the shape of the soft
dielectric membrane with two different
pressures (a) p/(lH/A)¼ 0.9. (b) p/(lH/
A)¼ 1.0.

FIG. 6. Evolution of (a) longitudinal
stretch, (b) apical height, (c) true stress,
and (d) electric filed at the center of the
membrane under several different vol-
tages, while the pressure is kept as a con-
stant p/(lH/A)¼ 0.5. In the figure,
horizontal dash lines represent equilib-
rium solutions for short-time limit and
long-time limit.
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similar setup in experiments. As reported by Li et al.,16 for a
dielectric elastomer of acrylic elastomer mounted on a cham-
ber of fixed volume, when the voltage is ramped up and kept
at 5.5 kV for several minutes, the membrane continues
deform and even form wrinkles after a while. Using the cur-
rent viscoelastic model, we can possibly study the delayed
wrinkling phenomenon described in Ref. 16.

VI. CONCLUSIONS

Equilibrium thermodynamic modeling of dielectric elas-
tomers have been developed and used intensively to analyze
the performance of various dielectric elastomeric structures.
While viscous relaxations in dielectric elastomers have been
often observed in experiments, few theoretical analysis can be
found in modeling large and inhomogeneous deformations in
dielectric elastomers with considering the effect of viscoelas-
ticity. In this article, we study the viscoelastic deformation in
a circular dielectric elastomer membrane subject to pressure
and voltage. The evolution of various physical fields in the

membrane has been calculated. We further show that when
the pressure or voltage is small, the dielectric elastomer can
evolve to an equilibrium state after a certain time. However, if
the pressure or voltage is beyond a critical value, no equilib-
rium state can be reached. The calculation results may help to
understand some time-dependent failure modes observed in
dielectric elastomer structures. It should also be pointed out
that the analysis in this paper is based on the neo-Hookean
material model. The stiffening effect of the elastomeric mem-
branes at large deformation is ignored. To study the stiffening
effect, further investigations can be performed by replacing
the neo-Hookean model in the current by the material models
considering the stiffening effect, such as Gent model33 and
Arruda-Boyce model.34
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