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When a hydrogel swells, its surface often forms creases, a type of localized instability that nucleates and
propagates in the form of self-contact. Motivated by recent applications of pH-sensitive hydrogels as
actuators in adaptive lenses, here we analyze creases induced by constrained swelling. A ring of a gel,
bonded between two rigid plates, swells by absorbing a solution from its external wall. The amount of
swelling is adaptive in response to the change of the pH of the external solution. We analyze the large
and inhomogeneous deformation in the gel by using a previously developed nonlinear field theory and
finite element method. We show that, as the pH in the external solution increases, a short ring swells
smoothly, but a tall ring forms a crease. We further show that the large deformation and instability
can significantly affect the functionality of the adaptive lenses.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A network of long polymer chains can imbibe a solution and
swell, resulting in a gel. The amount of swelling is adaptive in re-
sponse to changes in environmental stimuli. For example, acidic
groups tethered to the polymer chains make the hydrogel adaptive
to a change of pH value in the external solution. Such stimuli-
responsive gels have been intensely developed as functional parts
of many microsystems, including microfluidics (Beebe et al., 2000;
Sugiura et al., 2007), micro-optics (Chang et al., 2010), and active
surfaces (Tokarev and Minko, 2008). In the applications, gels swell
under the constraint of hard materials, undergoing large deforma-
tion and instability.

This paper studies swelling and instability of pH-sensitive
hydrogels. We are motivated by recent designs that use rings of
hydrogels as actuators in microsystems (e.g. Dong et al., 2006;
Dong and Jiang (2006); Zhu et al., 2011). A representative setup in-
volves a ring of a pH-sensitive hydrogel bonded between two rigid
plates (Fig. 1). A liquid immiscible with the hydrogel fills the space
enclosed by the ring, while an aqueous solution containing mobile
ions surrounds the ring. Another liquid is above of the top plate
and is in contact with the liquid enclosed by the ring through a
hole in the top plate. The interface of the two liquids forms a
meniscus, which is used as a microlens. In response to a change
of the pH value in the external solution, the ring absorbs or releases
water. The deformation in the gel moves the liquid enclosed in the
ring, changing the curvature of the meniscus and the focal length of
ll rights reserved.
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the lens. A similar system has been designed with a ring of a
temperature-responsive hydrogel (Dong et al., 2007; Zhu et al.,
2011). Note that the human eye has an analogous way to achieve
the function of focus by deforming the lens (Coleman, 1986).

Willis (1948) described the creasing instability in a compressed
elastomeric tube. This instability has received theoretical and
experimental studies (Dai and Wang, 2008; Beatty, 1987). In Wil-
lis’s experiment, an elastomeric cylindrical tube is compressed
with both ends fixed. When the compressive strain is relatively
small, both inner surface and outer surface of the tube bulge out-
ward to form convex surfaces. But with further the compression,
a crease forms in the middle of the inner surface of the tube with
a concave shape. We expect that similar instability may appear
in the ring of the pH-sensitive hydrogel ring swelling under the
constraint of the rigid plates.

Instabilities have been often observed in constrained swollen
gels (e.g., Dervaux and Ben Amar, 2011; Trujillo et al., 2008; Tanaka
et al., 1987). For example, during swelling, a free standing gel may
swell inhomogenously in a short time and internal stresses are
generated. The internal stresses can trigger different types of insta-
bility (e.g., Tanaka et al., 1987). After the gel is equilibrated with
the solvent, there is no stress in the gel and the instability patterns
disappear finally. However, if a gel swells under constraint, non-
zero stresses can exist in an equilibrated gel. Therefore, instability
has also been frequently observed in equilibrated constrained
swollen gels (Dervaux and Ben Amar, 2011; Trujillo et al., 2008).

To analyze a variety of instability phenomena in gels, linear per-
turbation methods have been commonly adopted (e.g. Biot, 1965;
Tanaka and Sigehuzi, 1993; Boudaoud and Chaieb, 2003). However,
not all instabilities can be analyzed by the linear perturbation
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Fig. 1. Sketch of an adaptive liquid microlens, which is the meniscus between two liquids located in the center of the top surface. A ring of a pH-sensitive gel, height H,
internal radius A and external radius B, is located between the top and bottom rigid plates. Outside the ring is an aqueous solution, and inside the ring is an immiscible liquid.
A change in the pH of the external solution makes the ring deform and changes the focal length of the microlens.
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method. In particular, the creasing instability cannot be analyzed
by the linear perturbation method (Hohlfeld and Mahadevan,
2011; Hong et al., 2009a; Cai et al., 2012). In contrast to wrinkles,
a crease is a nonlinear perturbation of the field of deformation
which is localized in space. In Hong et al. (2009a), an energy meth-
od has been proposed to study the onset of creases in elastomers.
In the study, energies in a creased and smoothly deformed body
are calculated numerically. The energies of the two states are com-
pared and the point of no difference in energies sets the critical
condition of creasing instability (e.g. Wong et al., 2010; Kang and
Huang, 2010; Cai et al., 2010; Hong et al., 2009a). Furthermore,
Cai et al. (2012) find that the evolution of creasing instability can
be fully analyzed numerically by introducing a small defect in
the geometry with careful meshes. Although the creases have been
frequently observed in constrained swollen gels (Trujillo et al.,
2008; Kim et al., 2010; Yoon et al., 2010), the scientific study of
creases in gels, especially the creases in stimuli-responsive hydro-
gels, is still in a nascent stage.

Here we focus on the large deformation behavior and the creas-
ing instability in a ring of a pH-sensitive hydrogel swelling under
the constraint of hard materials. Note that creases have never been
calculated in pH-sensitive gels before, although they have been ob-
served experimentally many times. Also, despite the existence of
many experimental micro devices based on pH-sensitive gels, only
very little work has been done to develop their numerical simula-
tion in order to better understand these complex multi-physics
phenomena. The new contribution of our work addresses directly
these novel items of crease simulation in pH-sensitive gels and of
modeling micro devices based on these materials. In this paper,
the evolution of creasing in pH-sensitive gels is calculated for the
first time. We use the field theory of a pH-sensitive hydrogel and
the finite element method developed previously (Marcombe
et al., 2010). As the pH value in the surrounding solution increases,
the ring may undergo large deformation of two types (Fig. 2).
When the ring is short, the ring swells smoothly and forms a barrel
shape. When the ring is tall, a crease may develop on the internal
surface of the ring. We further show that the large deformation and
creasing instability can significantly affect the functionality of the
adaptive microlens system.
2. Model description and theoretical background

2.1. Problem description

The theoretical system we study in this paper is illustrated in
Fig. 1. A ring of a pH-sensitive hydrogel is located between two ri-
gid horizontal plates. The ring is glued to the rigid plates. A liquid
immiscible with the gel is inside the ring, while an aqueous solu-
tion is outside the ring. We assume that gel can only exchange sol-
vent with the solution outside the ring, and the volume of
immiscible liquid inside the ring keeps constant. A small circular
hole in the center of the top plate makes the formation of a menis-
cus as the interface between two immiscible liquids. The meniscus
is used as microlens in the experimental setup of Dong et al. (2006)
described in the Introduction. The aqueous solution outside the
ring is composed of solvent molecules, positive ions, negatives ions
and hydrogen ions. A change in the pH in the external solution in-
duces the deformation of the ring, which causes the change of the
focal length of the liquid microlens.

To study the involved deformation of the gel ring quantitatively,
we will use a nonlinear field theory of inhomogeneous deformation
of pH-sensitive hydrogels and its finite element implementation
(Marcombe et al., 2010). The theory focuses on the state of equilib-
rium at the long-time limit when the hydrogel has been in contact
with the solution.
2.2. Equations of state of a pH-sensitive hydrogel

We first review the nonlinear field theory of a pH-sensitive
hydrogel described in our previous paper (Marcombe et al.,
2010). Consider a network of crosslinked polymers bearing acidic
groups which is in equilibrium with an aqueous solution and
mechanical forces (Fig. 3). The variation of the pH value in the
external solution may cause the change of the amount of water
in the gel. Let X be coordinate vector of a material particle of
hydrogel in the state of a dry polymer, which is viewed as the ref-
erence state. When the hydrogel equilibrates with external solu-
tion and applied forces, the particle moves to a place with



Fig. 3. pH-sensitive hydrogel is a polymer network that imbibes a solution. The polymer chains are covalently crosslinked and bear acidic groups AH. Some of the acidic
groups dissociate into fixed charges attached to the network and mobile hydrogen ions in the solvent. Four mobile species are taken into account in the solution: solvent
molecules, hydrogen ions, counterions and co-ions.

(a)

(b)

Fig. 2. Cross section of the deformed ring of the gel, which is bonded to the top and bottom plates. With the variation of the geometry, the ring may undergo two types of
deformation: (a) smooth swelling and (b) creasing.
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coordinate x, so, the field of deformation is fully described by the
function x = x(X). The deformation gradient of the network F is

FiK ¼
@xiðXÞ
@XK

ð1Þ

In the external solution, let �nS; �n�; �nþ and �nHþ be the number of sol-
vent molecules, negative ions (co-ions), positive ions (counterions)
and hydrogen ions. The electrochemical potential of corresponding
species are denoted by lS;l�;lþ and lHþ . Define dV(X) as an ele-
ment of volume in the reference state, dA(X) as an element of area
in the reference state. In the current state, let Bi(X)dV(X) be the
external mechanical force applied on the element of volume and
Ti(X) dA(X) be the external mechanical force applied on the element
of area.

The hydrogel, external solution and external forces constitute a
thermodynamic system. The variation of the Helmholtz free energy
of the system associated with small variation of x(X), �nS; �n�; �nþ and
�nHþ , is equal to the sum of the variation of the free energy of the
hydrogel

R
dWdV , the free energy of external solution

lSd�nS þ lþd�nþ þ l�d�n� þ lHþd�nHþ and the potential energy of the
forces

R
BidxidV þ

R
TidxidA. At a constant temperature, when the

system is in equilibrium, the variation of free energy of the com-
posite system is zero, namely,
Z
dWdV þ lSd�nS þ lHþd�nHþ þ lþd�nþ þ l�d�n� �

Z
BidxidV

�
Z

TidxidA ¼ 0 ð2Þ

Define nominal concentration of a species in the gel as the num-
ber of the molecules divided by the volume of the hydrogel in the
reference state, namely, the volume of the dry polymer. Denote
CSðXÞ;C�ðXÞ;CþðXÞ and CHþ ðXÞ as the nominal concentrations of
the solvent molecules, the co-ions, the counterions and the hydro-
gen ions respectively. The gel can only obtain the first three mobile
species from the external solution, so we have the relation,Z

dCaðXÞdV þ d�na ¼ 0 ða ¼ s;�;þÞ: ð3Þ

The hydrogen ions in the gel can be either from the external
solution or produced by the acidic group dissociation from the
polymer chain. Indeed, as illustrated in Fig. 3, the hydrogel con-
tains acidic groups-AH that may dissociate into fixed charges A�

attached to the network and the mobile hydrogen ions H+. So, we
have that,

Z
dCHþ ðXÞdV þ d�nHþ �

Z
dCA� ðXÞdV ¼ 0 ð4Þ
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Let f be the number of acidic groups AH attached to polymer
network divided by the number of monomers in the network,
and X be the volume per monomer. The sum of the number of
the associated acidic groups AH and that of the fixed charges A�

equals the total number of the acidic groups:

CAHðXÞ þ CA�ðXÞ ¼ f=X: ð5Þ

Following the discussion in the previous paper (Marcombe
et al., 2010), when the size of the gel is much larger than the Debye
length, we can assume the electroneutrality of both the gel and the
external solution, so that

CA� ðXÞ þ C�ðXÞ ¼ CHþ ðXÞ þ CþðXÞ ð6Þ

�nþ þ �nHþ ¼ �n�: ð7Þ

Considering the amount of the ions inside the gel is much smal-
ler than the amount of water molecules in the gel, according to the
molecular incompressibility assumption (Hong et al., 2009b), the
total volume of the gel is equal to the sum of the volume of the
dry polymer and the volume of the water,

1þXsCs ¼ det F ð8Þ

where Xs is the volume of a single molecule of water.
Following the previous work (Marcombe et al., 2010), the free

energy function of the pH sensitive hydrogel is assumed as the
sum of the following contributions:

W ¼Wnet þWsol þWion þWdis; ð9Þ

where Wnet is the free energy of stretching of polymer network, Wsol

is the free energy of mixing of polymer molecules with solvent, Wion

is the free energy of mixing ionic species with solvent and Wdis is
the free energy of dissociation of weak acid. Eq. (9) describes an
ideal elastomeric polyelectrolyte model, which is an extension of
ideal elastomeric neutral gel model described in Cai and Suo (2012).

Next, we list the explicit function of each term in (9). The free
energy related to the stretching of the network is described by
the Gaussian-chain model:

Wnet ¼
NkT

2
ðFiK FiK � 3� 2 logðdet FÞÞ; ð10Þ

where N is the number of polymer chains divided by the volume of
the dry network, kT is the temperature in the unit of energy. The
free energy of mixing the network and solvent is

Wsol ¼
kT
XS

XSCS log 1þ 1
XSCS

� �
þ v

1þXSCS

� �
; ð11Þ

where v is a dimensionless measured of the enthalpy of mixing. The
free energy of mixing ionic species with solvent molecules is:

Wion ¼ kT CHþ log
CHþ

cref
Hþ det F

 !
� 1

 !
þ Cþ log

Cþ
cref
þ det F

 !
� 1

 !"

þ C� log
C�

cref
� det F

� �
� 1

� ��
ð12Þ

where cref
a is a reference value of the concentration of a species. The

free energy related to the dissociation of weak acid AH is:

Wdis ¼ kT CA� log
CA�

CA� þ CAH

� �
þ CAH log

CAH

CA� þ CAH

� �� �
þ cCA�;

ð13Þ

with c enthalpy due to dissociation of acidic groups.The auxiliary
conditions (3–8) reduce the number of independent fields that de-
fine the state of the swollen hydrogel to four, which can be
xiðXÞ;C�ðXÞ;CþðXÞ and CHþ ðXÞ. Therefore, the nominal density of
free energy can be written as a function of four independent
variables:
W ¼WðF;Cþ;C�;CHþ Þ: ð14Þ

Let �c�; �cþ; �cHþ be the true concentration of the three species of ions
in the external solution. We assume that the external solution is di-
lute, so that the electrochemical potentials of the ions are,

lþ � lHþ ¼ kT log
�cþcref

Hþ

cref
þ �cHþ

 !
; ð15Þ

l� þ lHþ ¼ kT log
�c��cHþ

cref
� cref

Hþ

 !
: ð16Þ

The chemical potential of water is taken to be,

lS ¼ �kTXSð�cHþ þ �cþ þ �c�Þ: ð17Þ

Inserting the explicit form of the free energy of the gel (9) into
the condition of equilibrium (2) and combining all the equations
above, we obtain the equations of state for a pH-sensitive hydrogel.
Firstly, we can recover the condition of chemical equilibrium with
respect to acidic dissociation,

Ka ¼
CHþCA�

CAHNA
; ð18Þ

with NAKa ¼ cref
Hþ expð�c=kTÞ. We can also recover the condi-

tions of Donnan equilibrium:

cþ=�cþ ¼ cHþ=�cHþ ; ð19Þ

c�=�c� ¼ ðcHþ=�cHþ Þ
�1
: ð20Þ

The applied stress rij equals the contractile stress of the network
minus the osmotic pressure

rij ¼
NkT
det F

ðFiK FjK � dijÞ � ðPsol þPionÞdij ð21Þ

where,

Pion ¼ kT cHþ þ cþ þ c� � �cHþ � �cþ � �c�ð Þ; ð22Þ

Psol ¼ �
kT
XS

log 1� 1
det F

� �
þ 1

det F
þ v
ðdet FÞ2

( )
: ð23Þ

Pion is the osmotic pressure due to the imbalance of the number
of ions in the gel and in the external solution, and Psol is the osmo-
tic pressure due to mixing the network and the solvent.

2.3. Finite element implementation

The variational statement (2) for inhomogeneous swelling of
the pH-sensitive hydrogel can be transformed to the format com-
monly used in finite element analysis. This is realized by using
the Legendre transformation of the free energy function:

Ŵ ¼W � ðlþ � lHþ ÞCþ � ðl� þ lHþ ÞC� � lSCS: ð24Þ

Inserting the above equation into (2), with auxiliary conditions
(3–8), we have thatZ

dŴdV ¼
Z

BidxidV þ
Z

TidxidA; ð25Þ

where Ŵ is a new free energy of the pH-sensitive gels, which can be
directly implemented into most finite element analysis programs.

Note that taking into account chemical equilibrium (18), Don-
nan equilibrium (19) and (20), the new free energy function de-
pends only on the deformation gradient and the concentrations
of positive ions and hydrogen ions in the external solution:

Ŵ ¼ ŴðF; �cHþ ; �cþÞ: ð26Þ
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The free energy function has been implemented by Marcombe
et al. (2010) into a subroutine UHYPER in ABAQUS.
3. Numerical simulations and discussions

3.1. Numerical simulation of creasing instabilities in a pH-sensitive gel

To analyze both the onset and subsequent development of
creases, we use the commercial finite-element software ABAQUS
with implemented user-subroutine for pH-sensitive gels. The
deformation in the ring, which is glued to the rigid plates, is as-
sumed to be axisymmetric. 8-node biquadratic axisymmetric
quadrilateral, hybrid reduced integration element (CAX8RH) is
used in the numerical simulations. Since a crease will emerge
wherever the strain first exceeds the critical value, only a small
perturbation (defect) is necessary to break translational invariance
and specify the position of the crease. The small perturbation is
introduced by placing in the finite element mesh a defect—a quar-
ter of a circle of a small radius. Note that a defect of any reasonable
shape and size would generate a crease provided that it is sharp
enough to concentrate strains at its tip. We chose the quarter of
circle because this shape allows smooth geometry transitions
without corners and improves the convergence of calculation. To
eliminate the effect of the size of the defect, the defect is made
much smaller than the characteristic length, thickness of the ring,
B � A. To resolve the field close to the tip of the crease, the defect is
made much larger than the size of the finite elements around the
defect. Note that this method works well to generate creases, see
e.g. previous work on elastomers Hong et al. (2009a), Cai et al.
(2010) and Cai et al. (2012). The perturbation is introduced in
the middle of the inner surface of the ring (Fig. 4). This choice of
the defect location is dictated by the following considerations.
Firstly, Willis’ (1948) observations for hollow rubber cylinders con-
firm clearly that a crease generates at this location and not else-
where. Secondly, the location where a crease is expected and,
thus, where a defect is included has to attain the critical compres-
sive strain for a crease to generate. Only when the critical compres-
sive strain is locally reached, the crease nucleates and propagates.
Our numerical calculation without defect indicates clearly the
highest compressive strain located in the middle of the inner side
of the ring, which, along with the Willis experiment, confirms our
assumption. Recall that, to obtain the solution near the crease tip,
(a)

(b)

Fig. 4. The schematic of the numerical simulation of the creasing instability in the
ring of the gel. (a) A small defect is introduced in the middle of the inner surface. (b)
When the gel swells, self-contact may propagate. B/A = 1.5 is fixed in all the
calculations, but H/A is varied.
the size of the finite elements around the defect is made much
smaller than the size of the defect. The surface of the ring is al-
lowed to fold and self-contact. Following Marcombe et al. (2010),
we use the following dimensionless parameters for the pH-sensi-
tive hydrogel in the calculations: NXs ¼ 0:001;v ¼ 0:1;pKa ¼ 4:25
and f ¼ 0:1. To simplify the calculations, the volume per monomer
is assumed to equal the volume per solvent molecule, namely
X ¼ Xs. We further assume that the pH-sensitive gel ring is stress
free when the pH in the external solution is pH0 ¼ 2 and the con-
centration of positive ions is C0 = 0.001 M.

3.2. Results and discussions

Results of simulations provided in Fig. 5 illustrate the behavior
of rings of the pH-sensitive gel of different heights H/A and the
fixed B/A = 1.5. When H/A < 0.56, the ring swells smoothly, devel-
oping a barrel shape in the whole range of pH values (Fig. 5a),
and the inner surface of the hydrogel ring is convex. When H/
A > 0.56, the ring swells smoothly for a limited range of pH value
and a crease develops on the inner surface (Fig. 5b–d). The depth
of the crease can be as large as one fifth of the thickness of the ring.
Our simulation results for the constrained swollen pH-sensitive
qualitatively agree with the observations in Willis experiments
summarized in the Introduction. In applications, cyclic formation
of creases at the inner surface of the gel ring may initiate a prema-
ture failure of the system.

The nucleation and growth of a crease can be represented by
plotting the depth of the crease as a function of the pH (Fig. 6).
When H/A < 0.56, no self-contact develops for the whole calculated
range of pH. When H/A = 0.56, a self-contact zone starts to initiate
when the pH value is around pKa = 4.25, but then disappears when
the pH value becomes large. When H/A > 0.56, the length of the
self-contact zone increases significantly when the pH value is
above pKa = 4.25 of the gel system. Therefore, H/A = 0.56 is approx-
imately a boundary between smooth deformation and creasing.
Fig. 6b shows the growth of the self-contact zone of the gel ring
with increasing the pH value for several large values of H/A. After
an abrupt increase, the self-contact length of the gel ring can reach
a significant portion of the ring thickness. When the pH value is the
same in the external solution, larger self-contact zone develops
with larger value of H/A. For example, when pH = 10 for the gel ring
with H/A = 0.59, the self-contact length reaches about 15% of the
thickness of the ring. When pH = 10 for the gel ring with H/
A = 1.5, the self-contact length can reach 50% of the thickness of
the ring. It is important to note that, in the simulations with H/
A > 0.56, the introduction of a small defect on the inner surface
of the gel ring helps significantly the calculations to converge. If
no defect is introduced, the calculation often stops when the crease
is supposed to initiate. We interpret this stop in finite element cal-
culation as another sign of the instability.

For the particular application illustrated in Fig. 1, the volume
enclosed by the ring and the rigid plates is directly related to the
focus length of the liquid microlens. Fig. 7 plots the change of
the enclosed volume as a function of pH value. The difference be-
tween the current and initial volume is normalized by the initial
volume. The aspect ratio H/A can have a significant influence on
the volume change, and, hence, on the functionality of the lens.
The relative volume change can be both positive and negative,
depending on the aspect ratio H/A. For our calculated geometries,
the negative volume change can be as large as 50% of the initial
volume and the positive volume change can be as large as 1.5 times
the initial volume. Understanding of this behavior is of crucial
importance for the design of the adaptive liquid lens considered
in Fig. 1.

According to our results, it is possible to vary the value H/A in
such a way that it determines the types of lens upon increasing



(a)

(c)

(d)

(b)

Fig. 5. Results of simulations. Initial and final states of the pH sensitive gel ring with different values of aspect ratio H/A. (a) The ring swells smoothly pH = 10. (b) The ring
swells smoothly for small pH value, while self-contact begin to propagate at the inner surface to form a crease when pH becomes bigger. (c and d) Concavity is enhanced as
aspect ratio increases. The outer surface swells and self contact develops in the center of the inner surface. (d) The ring collapses at a smaller value of pH = 5. Close-up views
on the right show the crease at final state. The region of small values of H/A corresponds to the smooth swelling for any values of pH. The region of bigger values of H/A
corresponds to unstable swelling where creasing propagates with increasing pH. Transition from smooth swelling to creasing occurs around the approximate value H/
A = 0.56. Note that this condition is satisfied for the dimensions of the adaptive optics device described in Dong et al., 2006.

Fig. 6. Normalized crease depth L/A versus pH for several aspect ratios H/A. (a) For small values of H/A, only smooth swelling occurs and no crease propagates. At around H/
A = 0.56, a transition between smooth swelling and creasing happens. Self-contact sets in first and reduces around pH = 5. (b) For larger values of H/A, the crease propagates.
For example, when H/A = 0.59, the self-contact length increases with pH and finally saturates at high pH values. Small circles represent the discrete results obtained from
finite element simulations.
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pH value in the solution. We consider the refractive index of the li-
quid above larger than that of immiscible liquid inside the ring. The
meniscus bulged upward diverges incident light from the bottom
of the structure and the one bulged downward converges light.
We consider an initial meniscus that is bulged upward as in
Fig. 1. When H/A < 1, the inner liquid pushes the meniscus up with
increasing the pH value, keeping in that case a divergent lens for
the incident light from the bottom. This case corresponds to the
application principle of the adaptive optics device reported in the
Fig. 3 from Dong et al. (2006). When H/A > 1 and with the same ini-
tial curvature of the liquid lens, an increasing of pH makes the in-
ner surface of the ring bulge outward in the radial plane. The
meniscus is sucked down and the liquid lens becomes convergent
for the incident light from the bottom. For even larger values of H/



(a)

(b)

Fig. 7. Change in the volume enclosed by the ring DV , normalized by the initial volume. Volumes V0 is plotted as a function of pH for several different aspect ratios H/A. (a) The
calculated volume is shaded. (b) The variation of volume becomes negative when H/A is smaller than 1. In the calculated range of the aspect ratio H/A, the negative volume
change can reach 50% for H/A = 0.55, while the positive volume change can reach 150% for H/A = 2.5.
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A, one could also take advantage of the creasing instability, under
assumption that it does not make the ring collapse. For instance,
the large amount of negative volume change for high values of
H/A (around H/A = 2) would be useful to drive the focus lens of a
larger liquid meniscus.

A direct comparison between our calculations and experimental
results from Dong et al. (2006) is difficult at this writing due to the
lack of experimental measurements (e.g., deformed shapes of the
ring, material properties of the AA hydrogel). Moreover, compared
to the original experimental setup of Dong et al. (2006), our calcu-
lation models made some modifications. For example, in our mod-
el, we assume that the liquid enclosed by the ring is immiscible
and cannot be absorbed by the gel. The gel can only exchange sol-
vent molecules with the solution outside the gel ring. The volume
of the liquid inside the gel ring is conserved, which enables a reli-
able control of the micro-optics system, namely, the focus length of
the liquid meniscus. In the system described in Dong et al. (2006),
the liquid enclosed by the gel ring is also an aqueous solution.
Therefore, the solution already absorbed by the gel can exchange
with the solution enclosed by the ring via osmosis. Consequently
the volume of liquid enclosed by the gel ring may not be conserved
in such a system. Furthermore, because the gel is permeable to the
aqueous solution outside, the solvent enclosed by the gel ring will
transport through the gel to equilibrate with the aqueous solution
outside. Therefore, some of the behaviors observed in the experi-
ments of Dong et al. (2006) may be transient. In addition, due to
the complexity of the whole solvent exchanges, the structure be-
comes less controllable and predictable. Last, in our model we as-
sume the ring is glued to the rigid plates. This does not allow the
gel ring to move. That may not be the real setup in the experiment
from Dong et al. (2006), where the ring of hydrogel is constructed
by photopaterning prepolymer mixtures.

4. Conclusion

We have analyzed large-deformation swelling and creasing
instability in a constrained swollen ring of a pH sensitive hydrogel.
Depending on the height of the ring, the system behaves very dif-
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ferently. When the ring is short, a smooth barrel-shaped swelling
develops in the ring in a wide range of pH values. The inner surface
of the hydrogel ring becomes convex. When the ring is tall, the ring
swells smoothly only for small pH values. As the pH further in-
creases, a crease appears and a self-contact develops and propa-
gates. The inner surface of the hydrogel ring can even become
concave for higher values of aspect ratio H/A. We further illustrate
that the deformation type in the ring may have a very significant
influence on the performance of the liquid adaptive lens system.
We hope that our computational method will aid the development
of adaptive systems using stimuli-responsive hydrogels.
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