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tween two soft layers

Kai Lia and Shengqiang Cai*b

Two solids can adhere to each other in the presence of a liquid bridge between them, which is called wet

adhesion. When the solid is soft, the liquid bridge can cause deformation in the material, and in turn, the

deformation may have dramatic effects on the wet adhesion. To investigate the effect, in this article, we

calculate the deformation in two soft layers with different separations and connected by a liquid bridge.

We illustrate the effect of deformation in the soft layers on the adhesive force. For a given liquid volume

and separation between the two layers, the adhesive force increases dramatically by decreasing the

elastic moduli of the soft layers. We also discuss the contact between the two soft layers due to the

deformation caused by the liquid bridge. Depending on the volume of the liquid bridge, the two layers

may be in contact with each other at the center of the wetting area or some other locations between the

center and the contact line. The results may improve current understanding of wet adhesion between

soft materials and have potential applications in designing and fabricating soft devices and structures.
Introduction

Adhesion between two solid surfaces can be vital in making
various structures and devices.1–3 In terms of the adhesive
mechanism, adhesion between two solids can be broadly
divided into dry adhesion and wet adhesion. For dry adhesion,
intermolecular interaction such as van der Waals force is
responsible for the adhesion.4,5 Many animals, including
insects, spiders, lizards and geckos, have the capability to cling
to different surfaces using van der Waals forces.6,7 For wet
adhesion, liquid bridges exist between two adjacent surfaces
and capillary force is responsible for the adhesion.8,9 Examples
of wet adhesion range from the aggregation of granular mate-
rials in a wet environment10 and crack propagation in the
presence of moisture,11 to the attachment of animals like
beetles, blowies and ants, which can release uid to attach
their pads onto different surfaces.12–14

Many experiments have shown that adhesion can cause
deformation in the material, which, in turn, can dramatically
affect the adhesion properties.15–17 In the past, deformation in
the material due to dry adhesion has been intensively
studied.18,19 For example, based on London theory of van der
Waals forces between small particles and colloids,20 Johnson–
Kendall–Roberts (JKR) theory extended the Hertz contact
theory21 to study the adhesion between two elastic spheres, with
considering the deformation caused by van der Waals forces.22

Gao et al. proposed an accordion model to investigate the
properties of gecko adhesion, and found that deformation in a
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foldable hard skin due to dry adhesion is crucial for the multi-
functionalities of the accordion pad including self-cleaning,
strong attachment and easy detachment.23 Diverse deformation
modes and mechanical instabilities, such as cavitation and
elastic ngering, have been frequently observed in the process
of separating a rigid probe from the surface of a so adhesive
thin lm.24–26 It has been clearly demonstrated that complex
deformations in the materials are closely related to their
adhesion properties.24–26

Compared to dry adhesion, the deformation in the material
due to capillary forces in wet adhesion has been much less
studied. This is probably because the deformation in the
material caused by capillary force is usually small and negli-
gible. However, recent experiments have shown that capillary
forces can induce large deformations or even mechanical
instabilities in so materials.27–29

As a matter of fact, the deformation in the material due to
capillary force can be estimated by comparing the size of the
material with elasto-capillary length: g/E, where E is the elastic
modulus of the material and g is the surface free energy
density.30 When the size of the material is much larger than the
elasto-capillary length, capillarity-induced deformation can be
ignored in the material. However, when the size of the material
is comparable or smaller than the elasto-capillary length,
capillarity-induced deformation in the material can be
dramatic.31,32 Therefore, in this paper, we study wet adhesion
between two so layers with considering the deformation of the
material.

In calculating the deformation of a solid caused by a liquid
droplet, the analysis of the deformation around a three-phase
contact line is critical. To avoid possible deformation singu-
larity in the three-phase contact line, surface stresses in the
solid33,34 are considered. By closely following the methods in the
This journal is © The Royal Society of Chemistry 2014
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literature,35 we calculate the deformation of the so layers
caused by the liquid bridge connecting them. Using the
shooting method, for a given liquid volume and separation
between two layers, we calculate the adhesive force caused by
the liquid bridge. The inuence of elastic moduli of so layers
on the adhesive force is also investigated. The results may
improve current understanding of wet adhesion in so mate-
rials and have potential applications in designing and fabri-
cating so devices and structures.
Fig. 1 (a) Schematic of a liquid bridge connecting two soft layers. (b)
Young's equation leads to a net force withmagnitude glg sin q0 per unit
length at the contact line. (c) The soft layer deforms under the action of
the Laplace pressure and liquid surface tension. In this case, the Lap-
lace pressure P always pulls the soft layer because the pressure inside
the liquid is smaller than the atmospheric pressure.
Model and formulation

Fig. 1a sketches the system to be investigated in this article. Two
identical so layers, with innitely large lengths in two planar
directions and nite thickness h, are in wet adhesion with each
other through a liquid bridge with volume V. The two layers are
attached to two rigid plates respectively. Two separation forces
with equal magnitudes but opposite directions are applied on
the rigid plates. We assume that the shape of the liquid bridge is
axisymmetric with radius R of wetting area on the top and
bottom of the so layers, as shown in Fig. 1a. We specify a
cylindrical coordinate system, whose origin O lies on the surface
of the undeformed lower so layer (Fig. 1a).

Due to the presence of liquid surface tension, the pressure
inside the liquid bridge is different from the pressure outside,
and the difference is dened as Laplace pressure P, which can
be calculated by the Young–Laplace equation,36

P ¼ glg

�
1

R1

þ 1

R2

�
(1)

where R1 and R2 are the two principle radii of curvature of the
surface of the liquid bridge as shown in Fig. 1a, and glg is the
surface tension of the liquid. Since the effect of gravity is
neglected, P is the constant in the liquid bridge, and the surface
of the liquid bridge has the same mean curvature at any
point.

The contact angle q0 of the liquid bridge on the layer is given
by Young's equation,36

gsg � gsl ¼ glg cos q0 (2)

where gsl and gsg are the solid–liquid interfacial free energy
density and solid–gas interfacial free energy density, respec-
tively. Eqn (2) is the consequence of minimizing total interfacial
free energy of the system with allowing the contact line move
freely in the tangential direction of the surface. However, eqn (2)
leads to an imbalance of vertical forces with magnitude
glg sin q0 (Fig. 1b), which can deform the so layers as well.

When the system is in equilibrium, the separation force F is
balanced with the adhesive force which is the sum of the effect
of liquid surface tension and Laplace pressure P as shown in
Fig. 1c:

F ¼ 2pRglg sin q0 cos (q � q0) + pR2P (3)

where q is commonly known as the “apparent” contact angle,
which is the angle between the surface of the liquid bridge at
This journal is © The Royal Society of Chemistry 2014
the contacting point and the horizontal surface as shown in
Fig. 1b.

To obtain the Laplace pressure in eqn (3), we need to
calculate the prole of the liquid bridge for a given volume and
separation between two layers. To describe the prole of the
liquid bridge affected by surface deformation of layers, we set
up a new vertical coordinate as z1 ¼ z� uz(R, 0), where uz(R, 0) is
the vertical displacement of the so layer at the contact line.
The shape of the liquid bridge can be described by the function
Soft Matter, 2014, 10, 8202–8209 | 8203
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r ¼ r(z1) (Fig. 1a), and the two principle radii of curvature are
given by R1 ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
, R2 ¼ (1 + r02)3/2/r0 0. So, the Young–

Laplace equation in eqn (1) can be rewritten as

P

glg

¼ r00

ð1þ r02Þ3=2
� 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p : (4)

The boundary conditions for eqn (4) are

r|z1¼0 ¼ R (5a)

r0|z1¼0 ¼ �1/tan q. (5b)

Because of the mirror symmetry, we have,

r0|z1¼d/2�uz(R,0) ¼ 0. (6)

Ignoring the deformation of the two so layers, the above
equations are adequate to compute the Laplace pressure and
the adhesive force. However, as discussed in the Introduction,
in this article we intend to take into account the deformation of
the so layers caused by the liquid bridge and investigate the
effect of the soness of the layers on the wet adhesion. In the
following section, we are going to list the equations for calcu-
lating the deformation in the so layers.
Kzz
�1ðsÞ ¼ 2ð1� n2Þ

sE

1

5� 12nþ 8n2 þ 2s2h2 þ ð3� 4nÞcoshð2shÞ
ð3� 4nÞsinhð2shÞ � 2sh

þ 2sð1� n2Þgs

E

(12)
Because the shape of the liquid bridge is assumed to be
axisymmetric, the deformation of the so layers is also
axisymmetric. We assume both strain eld and rotation in the
material are small, so the governing equations for the axisym-
metric deformation of so layers are the Navier equations,37

ð1� 2nÞ
�
V2ur � ur

r2

�
þ v

vr
ðV$uÞ ¼ 0 (7a)

ð1� 2nÞV2uz þ v

vz
ðV$uÞ ¼ 0 (7b)

where ur and uz are the r and z components of the displacement
u, and n is the Poisson ratio of the material. In this article,
strains in deformed so layers do not exceed 8% in all the
calculations. Although 8% strain is by no means innitesimal
deformation, we believe that linear elasticity can still be a good
approximation in our model. As a matter of fact, linear theories
have met with remarkable success in describing even moder-
ately large deformation.

Because the two so layers are identical, we only need to
calculate the deformation in the bottom layer. The layer is
constrained by a rigid plate on its bottom surface, so the
boundary condition for the displacement is

u(r, �h) ¼ 0 (8)
8204 | Soft Matter, 2014, 10, 8202–8209
for all r with origin O.
The traction imposed by the liquid bridge on the surface of

the so layer in vertical direction is given by

szz(r, 0) ¼ glg sin q0 cos (q � q0)d(R � r) + PH(R � r) (9)

for all r with origin O, where d(x) and H(x) are the Dirac delta
and Heaviside step functions, respectively. It is noted that the
angle q can be affected by the deformation of the so layer, as

q ¼ q0 � arctan

�
vuzðR; 0Þ

vr

�
: (10)

To solve the axisymmetric problem, we follow the method
adopted by Jerison et al.35 Because the tangential traction on the
surface szr(r, 0) is negligible, we assume that the deformation of
the so layer is only caused by the vertical traction szz(r, 0). The
surface displacement of the so layer is given by35

uz(r, 0) ¼ H0
�1[Kzz

�1(s)H0[szz(r, 0)]] (11)

where H0 is the Hankel transformation of order 0, and Kzz
�1(s)

is35
where s is the radial wavenumber of the Hankel transform of
order 0, and the surface stress of the so layers gs is considered
here for cutting off the divergence of strain at the triple line. For
simplicity, we assume that surface stress is the same on the
solid–liquid interface and solid–gas interface. The deformation
can be obtained by a dual integral equation when the surface
stresses on the solid–liquid interface and solid–gas interface are
different.38 In the following calculations, we set the ratio
between solid–liquid interfacial free energy density and surface
stress of the so layer as glg/gs ¼ 0.5.

Combining eqn (9) and (11), we can obtain the vertical
displacement of the so layer on the surface caused by the
liquid bridge as

uzðr; 0Þ ¼
ðN
0

s

�
glg sin q0 cosðq� q0ÞRJ0ðsRÞ

þ PRJ1ðsRÞ
s

�
Kzz

�1ðsÞJ0ðsrÞds (13)

where the expression within the square of the integration is the
Hankel transform of order 0 of the right-hand side of eqn (9), J0
and J1 are the 0 and 1 order Bessel function of the rst kind
respectively.

Based on the displacement given in eqn (13), we can calcu-
late the volume of the liquid bridge by the integration,
This journal is © The Royal Society of Chemistry 2014
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V ¼ 2

ðd=2�uzðR;0Þ

0

pr2dz1 � 2

ðR
0

2pr½uzðr; 0Þ � uzðR; 0Þ�dr; (14)

where the rst term of the right-hand side is the volume
enclosed by the outline of the liquid bridge r ¼ r(z1) and two
horizontal axes z1 ¼ 0 and z1 ¼ d � 2uz(R, 0), and the second
term corresponds to the volume of the so layers above z1 ¼
0 and below z1 ¼ d � 2uz(R, 0).

In the following section, we are going to describe the
numerical method of solving the above equations and discuss
the results we obtain.
Fig. 2 Adhesive force between two soft layers as a function of sepa-
ration distance for different elastic moduli of the soft layers with three
different volumes of the liquid bridge: (a) V/h3¼ 0.05; (b) V/h3¼ 0.1; (c)
V/h3 ¼ 0.3. To avoid the complexity of calculating contact between
the two layers, calculations start from a separation distance larger than
the distance for the initial contact, which is marked as grey circular
dots in the figure.

Fig. 3 Adhesive force between the two soft layers increases with
decreasing the elastic moduli of the soft layers.
Results and discussion

For a given volume of the liquid bridge, to calculate the adhesive
force as a function of the separation between two layers, we use
the shooting method. In the calculation, we rst assume the
values of radius R of the wetting area and Laplace pressure P,
and calculate surface deformation by solving eqn (13) with the
corresponding boundary conditions. Aer the surface defor-
mation is computed, we further calculate the liquid prole by
solving eqn (4) with the corresponding boundary conditions
eqn (5a) and (5b). Based on the surface deformation and liquid
prole, we can calculate the separation d and liquid volume V,
by solving eqn (6) and (14), respectively. Through several itera-
tions, we can obtain the contacting radius and Laplace pressure
for prescribed liquid volume V and separation d. Aer the
radius of the wetting area R and the Laplace pressure P are
calculated, we derive the adhesive force between the two so
layers for a given liquid volume V and separation d from eqn (3).
In the calculation, we assume that the so layer is incom-
pressible, i.e., n ¼ 0.5, and the contacting angle q0 ¼ p/3.

Fig. 2 plots the adhesive force as a function of separation d
for several elastic moduli of the so layers and different
volumes of liquid bridge. Because the radius of the wetting area
R and the Laplace pressure P decreases with increasing sepa-
ration d, the adhesive force decreases monotonically with
increasing the separation. From Fig. 2a–c, we can also conclude
that larger volume of liquid bridge results in larger adhesive
force for the same separation distance between the two layers.

Fig. 2 also illustrates that the separation force is larger for
soer layers with the same separation distance between the two
layers. To better show the inuence of soness of the layer on
the magnitude of adhesive force, Fig. 3 plots the adhesive force
as a function of modulus of the so layer for three different
volumes of liquid. It clearly shows that the adhesive force can
dramatically increase when the layer is so. For instance, with
the liquid volume V/h3 ¼ 0.3 and the separation d/h¼ 0.359, the
adhesive force can increase as large as 4 times when the non-
dimensional number glg/Eh changes from 0.01 to 0.08.

If the separation between two layers is too large, the liquid
bridge breaks, which can be predicted by instability analysis on
the liquid.39,40 In this paper, because we focus on the effect of
the elastic modulus of the so layer, we stop our calculation of
the force-separation curve once the Laplace pressure becomes
zero, which is actually very close to the breakage of the liquid
bridge.
This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 8202–8209 | 8205
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Fig. 5 Mean curvature of the liquid bridge surface, which is defined as
k¼ 1/R1 + 1/R2, decreases with the increase of the separation between
the two soft layers for three different liquid bridge volumes: (a) V/h3 ¼
0.05, (b) V/h3 ¼ 0.1, (c) V/h3 ¼ 0.3.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
5 

A
ug

us
t 2

01
4.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

21
/0

1/
20

15
 1

8:
01

:5
8.

 
View Article Online
If the separation between the two layers is too small, under
the action of surface tension and Laplace pressure, the surfaces
of the two so layers can deform and come into contact with
each other. To avoid the complexity of calculating contact, our
calculation starts from the separation distance larger than the
distance when the contact between the two so layers initially
happens. The circular solid points in Fig. 2 indicate the
conditions when two surfaces of the layers initially come into
contact with each other.

Fig. 4 plots how the elastic modulus affects the contact
between the twoso layers, fordifferent volumesof liquidbridge.
The layerswith a lowermodulus canbe in contactwith eachother
for a larger separationdistance.However, the separationdistance
between the two layers for the initial contact does not necessarily
change monotonically with increasing liquid volume, as shown
in Fig. 4. For glg/Eh ¼ 0.1, the separation distance for initial
contact with V/h3¼ 0.3 is smaller than that with smaller volume,
V/h3 ¼ 0.1. Interestingly, the separation distance for initial
contact with V/h3¼ 0.05 is also smaller than that with V/h3¼ 0.1.

Fig. 5 plots the mean curvature of the liquid bridge as a
function of separation, for different liquid volumes. For a xed
elastic modulus of the so layer, mean curvature of the surface
of the liquid bridge decreases with increasing the separation.
For a given separation, the mean curvature of the liquid bridge
increases with decreasing elastic modulus. The result implies
that so layers tend to increase the Laplace pressure in the
liquid bridge. We can understand the results as follows: for a
xed liquid volume and separation, the surfaces of the two
layers with smaller elastic modulus are closer to each other
through larger surface deformation. Therefore, for soer layers,
the mean curvature of the liquid bridge and the Laplace pres-
sure in the liquid are larger.

Fig. 6a and b plot the displacement of the wetting area of the
so layer for several separation distances, with liquid volumes
V/h3¼ 0.05 and V/h3¼ 0.1, respectively. For V/h3¼ 0.05 (Fig. 6a),
when the separation is large, the maximum vertical displace-
ment of the so layer is at the contact line, i.e. r/R¼ 1. When the
separation is small, themaximum displacement is at the center,
i.e. r/R¼ 0. Therefore, when the two so layers get close enough,
they come into contact with each other at the center rst. For
V/h3 ¼ 0.1 (Fig. 6b), when the separation is large, the maximum
Fig. 4 Dependence of separation distance for the initial contact
between the two soft layers on their elastic moduli, for three different
volumes of liquid bridge.

8206 | Soft Matter, 2014, 10, 8202–8209
displacement is also at the contact line. However, when the
separation decreases, the maximum displacement moves to the
center of the contacting area. When the separation becomes
small enough, the maximum displacement appears at a loca-
tion between the center and the contact line. In consequence,
when the two so layers get close enough, they rst come into
contact with each other at certain location between the contact
line and the center of the wetting area.

As shown in Fig. 1c and eqn (3), the deformation in the so
layer is induced by the surface tension and Laplace pressure. The
surface tension acts on the contact line, thereby generating the
largest vertical displacement at the contact line. However the
Laplace pressure induces the largest vertical displacement at the
center of the wetting area, when the radius of the wetting area is
small. The Laplace pressure can cause the largest vertical
displacement at a location apart from the center, when the
wetting area is large. The deformation shown in Fig. 6a and b is
due to the combination of surface tension and Laplace pressure.

Fig. 6c plots vertical displacement at the center of the wetting
area as a function of the separation. For V/h3 ¼ 0.05, the vertical
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Vertical displacement of the wetting area of the soft layers for
different separation distances with contact angle q0 ¼ p/3 and two
different volumes of the liquid bridge: (a) V/h3 ¼ 0.05 and (b) V/h3 ¼
0.1. (c) Plots vertical displacement at the center of the wetting area of
the soft layer as a function of the separation, with two different
volumes of the liquid bridge V/h3 ¼ 0.05 and V/h3 ¼ 0.1.

Fig. 7 Vertical displacement of the wetting area for different separa-
tion distances with zero contact angle q0 ¼ 0 and two different
volumes of the liquid bridge: (a) V/h3 ¼ 0.06, (b) V/h3 ¼ 0.3. (c) Plots
vertical displacement at the center of the wetting area of the soft layer
as a function of the separation, with two different volumes of the liquid
bridge V/h3 ¼ 0.3 and V/h3 ¼ 0.06.
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displacement at the center is a monotonic function of the
separation. For V/h3 ¼ 0.1, the vertical displacement at the
center is a non-monotonic function of the separation. To be
more detailed, the vertical displacement at the center of the so
layer increases rst and then decreases with increasing the
separation. The non-monotonic function can be understood by
considering the nite thickness of the so layer and the Poisson
effect of the material. Both Laplace pressure and wetting area
decrease with increasing the separation between the two so
layers. Although larger Laplace pressure tends to cause larger
vertical displacement at the center, larger wetting area (scaled
by the thickness of the so layer) results in smaller vertical
displacement at the center due to Poisson's effect. Therefore,
maximal vertical displacement at the center may appear for
medium Laplace pressure and wetting area and consequently
medium separation as shown in Fig. 6c.

To better illustrate the effect of Laplace pressure on the
deformation of the so layer, we calculate the vertical
displacement with assuming the contact angle q0¼ 0. Therefore,
the surface deformation is only induced by the Laplace pressure.
This journal is © The Royal Society of Chemistry 2014
Fig. 7a and b plot the displacement for several separations with
two different liquid volumes V/h3 ¼ 0.06 and V/h3 ¼ 0.3. When
the separation between the two layers is small, for a small liquid
volume, themaximal displacement is at the center of the wetting
area (Fig. 7a); for a large liquid volume, the peak displacement
appears at a location between the center and the contact line
(Fig. 7b). Now, however, the maximal vertical displacement of
the layers is not at the contact line, even for large separations.

Fig. 7c plots the vertical displacement at the center of the
wetting area as a function of the separation. For a small volume
V/h3 ¼ 0.06, the vertical displacement at the center is a mono-
tonic function of the separation. For a large volume V/h3 ¼ 0.3,
the vertical displacement at the center is a nonmonotonic
function of the separation. The result is qualitatively similar to
that shown in Fig. 6, though the surface deformation is only
induced by the Laplace pressure shown in Fig. 7.

Fig. 8 plots the calculated conguration of two so layers
connected by a liquid bridge with different separations. When
the two so layers are close enough to each other (Fig. 8a), the
two so layers contact at a location between the center and the
contact line. With increasing the separation, the radius of the
Soft Matter, 2014, 10, 8202–8209 | 8207
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Fig. 8 Snapshots of the deformation of the soft layers and the shape
of the liquid bridge at four different separations with the following
parameters: V/h3 ¼ 0.1, glg/Eh ¼ 0.01, glg/gs ¼ 0.5, q0 ¼ p/3, n ¼ 0.5.
The two layers begin to be in contact with each other when the
separation is d/h ¼ 0.1105 as shown in (a). The separations are d/h ¼
0.1496 and d/h ¼ 0.2566 in (b) and (c) respectively. The Laplace
pressure drops to zero when the separation is as large as d/h¼ 0.4064
as shown in (d). It is noted that in the figure, to clearly show the
deformation in soft layers, the horizontal scale is selected different
from the vertical scale. In addition, only a portion of soft layers are
included in the figure. The dimensionless thickness of each soft layer
should be 1 and the lateral size of the soft layer is infinitely large.
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wetting area and the curvature of the surface of the liquid bridge
gradually decrease (Fig. 8b–d). There exists a critical separation
between the two layers, beyond which a stable liquid bridge no
longer exists due to instability.39,40
Conclusions

In this paper, we study wet adhesion between two so layers
connected by a liquid bridge. We calculate the adhesive force
between the two so layers for different separation distances. In
the calculation, we have taken into account the surface defor-
mation of the so layers caused by the liquid bridge. The
calculation shows that the adhesive force between two so
layers decreases with increasing separation. For a given liquid
volume and separation, the adhesive force caused by the liquid
bridge increases with decreasing the elastic moduli of the so
layers. Our calculations have also shown that the two layers may
contact each other at small separation. Depending on the
volume of the liquid bridge and the moduli of the so layers,
the two so layers may contact each other at the center of the
wetting area or some place between the center and contact line.
Our results may improve the understanding of elasto-capillary
phenomena in somaterials and have potential applications in
designing and fabricating so devices.
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