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Creasing and wrinkling instability are two distinct surface instability modes characterized by
localized singular folds and continuous smooth undulations, respectively. In this article, we show
that the surface of a soft elastomer may develop wrinkles or creases under compression and the
action of gravitational force, depending on the magnitude of gravitational force. Using linear
perturbation analysis and numerical calculations, we establish a phase map with respective
creasing domain, wrinkling domain and the domain of homogenous deformation. When the
gravitational force is small, the surface of the elastomer forms creases when the compressive strain
is beyond a critical value, while the surface of the elastomer forms wrinkles under compression
when the gravitation force is large. VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4906933]

Wrinkles and creases are two fundamentally distinct me-
chanical instability modes, which can be often observed in
deformed soft materials such as gels and rubbers.1–3 It has
been demonstrated in both experiments and theoretical anal-
yses that when a soft elastic solid is compressed beyond a
critical strain, the free surface suddenly forms creases with
self-contact.1,4 In a recent experiment,5 wrinkles have been
observed on the surface of a soft gel under the effect of grav-
itational force. Those experiments suggest that the competi-
tion between elastic energy and gravitational potential
energy in a soft solid may determine its surface instability
mode-creases or wrinkles.

The effects of gravity on the elastic deformation of a
solid can be evaluated by the magnitude of a dimensionless
number: a¼qgH/l, where q is the density, g is the gravity,
H is the characteristic size, and l is the elastic modulus of
the solid. When the dimensionless number a is comparable
or larger than 1, gravitational force may greatly affect the
elastic deformation of solids. An alternative way of evalu-
ating the effects of gravity on the elastic deformation of
a solid is through introducing an intrinsic length scale
Lg¼l/qg. When the characteristic length of the solid is
comparable or larger than Lg, the effects of gravity on the
elastic deformation of the structure may be significant. For
example, when a mountain range is built in the crust, a is
large due to the considerable characteristic size (or in
another word, the size of the mountain is much larger
than its intrinsic length scale Lg). Consequently, gravita-
tional instability can happen in continental lithosphere.6

Gravitational force also plays important roles in the defor-
mation of soft bio-tissue such as intestinal tissue,7 which is
commonly soft with a Young’s modulus ranging from sev-
eral hundred to several thousand Pa.8

In this article, we investigate the conditions for the
onset of creases and wrinkles on the surface of the soft elas-
tic solid under compression and subject to the gravitational
force. By comparing the onset conditions of creases and
wrinkles, we establish a phase map with respective creasing
domain, wrinkling domain, and the domain of homogenous
deformation.

We first briefly summarize the governing equations of
an elastic solid undergoing finite deformation. Deformation
gradient of the solid is defined as

FiK ¼
@xi Xð Þ
@XK

; (1)

where XK is the coordinates of a material point of the elasto-
mer in undeformed state and xi is the coordinate of the same
material point in deformed configuration.

Using thermodynamics, the constitutive model of the
solid can be specified by a certain free energy density func-
tion W(F), namely,

SiK ¼
@W Fð Þ
@FiK

; (2)

where SiK is the nominal stress.
With taking account of the gravitational force, the me-

chanical equilibrium of the solid requires that

@SiK

@XK
þ qgi ¼ 0; (3)

where gi is the component of gravity.
Fig. 1(a) sketches the model to be analyzed in the article. A

block of an undeformed elastomer with thickness H is taken to
be the reference state. The gravity force a and uniaxial pre-
stretch kPre are applied to the block of elastomer as shown in
Fig. 1(b). The top surface of the elastomer is not allowed to
move vertically and the elastomer is assumed to deform in plane
strain condition. When the compression or gravitational force is
large, homogenously deformed elastomer may bifurcate either
into wrinkling state (Fig. 1(c)) or creasing state (Fig. 1(d))
depending on the magnitude of the dimensionless parameter a.

To obtain the critical conditions of wrinkling of the elasto-
meric block under compression, we adopt linear perturbation
analysis.2 Before perturbation, the deformation in the elasto-
mer is homogenous with prestretch kPre, which is given by

x0
1 ¼ kPreX1; (4a)
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x0
2 ¼ X2=k

Pre: (4b)

It is worthwhile to point out the stress in the elastomer is
inhomogeneous without perturbation.

Next, we perturb the homogenous deformation by a state
of infinitesimal displacement ~xiðXÞ to obtain an inhomoge-
neous deformation

xiðXÞ ¼ x0
i ðXÞ þ ~xiðXÞ: (5)

The corresponding additional deformation gradient ~FiK and
nominal stress ~SiK caused by the perturbations are

~FiK ¼
@~xi Xð Þ
@XK

; (6)

~SiK ¼
@2W Fð Þ
@FiK@FjL

~FjL: (7)

The perturbed nominal stress needs to satisfy the force bal-
ance equations

@ ~SiK

! "

@XK
¼ 0: (8)

A combination of Eqs. (6)–(8) gives the governing equa-
tions for the infinitesimal displacement ~xiðXÞ. The boundary
conditions for the perturbations are

~x1ðX1;HÞ ¼ 0; (9a)

~x2ðX1;HÞ ¼ 0; (9b)

~S12ðX1; 0Þ ¼ 0; (9c)

~S22ðX1; 0Þ ¼ 0: (9d)

In this article, we assume the elasticity of the elastomer
can be described by Neo-Hookean model, with the free
energy density W(F)9,10

W Fð Þ ¼ l
2

FiKFiK % p det Fð Þ % 1ð Þ; (10)

where l is the small-deformation shear modulus and p(X) is
the Lagrange multiplier to enforce the constraint of
incompressibility.

To solve the perturbation field, we assume

~x1ðX1;X2Þ ¼ f1ðX2Þ sinðmX1Þ; (11a)

~x2ðX1;X2Þ ¼ f2ðX2Þ cosðmX1Þ: (11b)

Substituting Eqs. (11a) and (11b) into Eqs. (6)–(8), we
obtains that

f IV
2 % m2 1þ 1

kPreð Þ4

 !
f2
00 þ m4

kPreð Þ4
f2 ¼ 0: (12)

The differentiation of f2 is over X2 and m is the wave-
number in Eq. (11) and it relates to the wavelength k of the
wrinkle by k¼ 2p/m.The ordinary differential Eq. (12),
accompanied with the boundary condition, leads to an eigen-
value problem, of which the trivial solution represents the
homogeneous state, while the nontrivial solutions correspond
to the wrinkling state. The eigenvalue that determines the
onset condition of wrinkling can be obtained by solving

FIG. 1. An elastomer is subject to grav-
ity and uniaxial compression. (a) The
undeformed elastomer is taken to be the
reference state with thickness H. (b)
Under gravity, the elastomer deforms
homogenously with pre-stretch kPre, but
the stress in the elastomer is inhomoge-
neous. When the compressive strain is
large enough, the homogenously
deformed state may bifurcate into (c)
wrinkling state or (d) creasing state.
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det
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¼ 0: (13)

The critical strain ecritical, defined as the strain at which
nontrivial solutions exist in Eq. (12) for a given gravity a, is
plotted in Fig. 2(a). Biot’s classical result of the wrinkling in
an elastomer under compression are recovered for a¼ 0.
With the increase of gravity, less compressive strain is
needed to induce wrinkles on the surface of the elastomer.
Gravity may even induce wrinkles with certain wavelength
on the surface of a pre-stretched elastomer (e.g., when
a> 7). The reason that gravity can facilitate the formation of
wrinkles is the gravitational potential of the solid can be
reduced through surface wrinkling.5

In the inset of Fig. 2(a), we can also find that when the
wavelength of wrinkles is small enough, namely, k& H and

k& Lg, the critical strain for wrinkling is independent of the
wavelength and the magnitude of a.

As shown in Fig. 2(a), for a certain gravity, critical
strain for wrinkles depends on their wavelength. There exists
one wavelength of wrinkle requiring smallest compressive
strain (or largest tensile strain), which is defined as the criti-
cal mode. Wavelength of critical mode is plotted as a func-
tion of gravity in Fig. 2(b). The red-cross in Fig. 2(b) is the
recent experimental measurement of the wrinkle wavelength
on the surface of a soft gel only under the action of gravita-
tional force.5

As discussed at the beginning of this article, the surface
of a compressed elastomer forms creases instead of wrinkles
when the gravitational force is negligible. Our recent
researches on creases have shown that the strain for the onset
of creases cannot be predicted by linear perturbation
analysis.11,12 Instead, a combination of numerical calcula-
tions and energetic analysis, adopted in the previous studies,
precisely predicted the strain for the onset of the crease.4

Before detailed analysis, using similar scaling analysis
for the wrinkles with small wavelength, we expect that the
gravitational force will have negligible effects on the onset
of creases, because the crease size is the only relevant length
scale, which is infinitesimal for incipient creases. The predic-
tion is verified in the following numerical analyses.

To obtain the strain for the onset of creases, following
Hong et al.,4 we calculate the free energy difference DU
between an elastomer with homogenously deformation and

FIG. 2. (a) Critical strains for wrinkles with different wavelength for differ-
ent gravitational forces (inset plot for a wider range of wavelength). (b)
Wavelength of the critical mode of wrinkles as a function of dimensionless
gravity. Red Cross point is from Ref. 5.

FIG. 3. Free energy differences between an elastomer with the homogenous
deformation and the one with crease of infinitesimal depth under gravita-
tional forces. The numerical results show that the effects of gravitational
forces on the formation of creases are negligible.
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the one with a prescribed crease of small depth L, using
FEM simulation (as shown in Fig. 3 inset). The free energy
of the elastomer is equal to the summation of the elastic
energy and the gravity potential of the elastomer. For an in-
cipient crease, its depth is the only length scale, so

DU ¼ lL2f ðe; aÞ; (14)

where the dimensionless number f(e,a) is to be calculated
and is a function of applied strain e and the dimensionless
gravity a. If DU> 0, the homogeneously deformed elastomer
has lower free energy. If DU< 0, the crease state has lower
free energy. Consequently, the critical condition for the onset
of crease is

f ðe; aÞ ¼ 0: (15)

As shown in Fig. 3, which clearly indicates that the effects
of gravity on the strain of the onset of creases is negligible.

The critical conditions for the onset of creases and the
critical mode of wrinkles are both plotted in Fig. 4. When
the strain is larger than the critical strain for both creases and
wrinkles, the elastomer will deform homogeneously with
keeping its surface flat. The surface of elastomer will form

creases or wrinkles, when the strain is smaller than the criti-
cal strain for the onset of creases or wrinkles (whichever is
larger). Based on the calculation, we can divide Fig. 4 into
three domains, which are homogenous deformation, creasing
state, and wrinkling state, respectively. When gravity is
small (a< 3.8) and the compression strain exceeds 35%,
creasing instability is formed. When gravity is large
(a> 3.8), wrinkling instability develops prior to the creasing
instability with an increasing critical strain.

In summary, surface instability of a soft elastic solid has
been recently intensively studied, when the solid is subject to
either compression or gravitational force. In the article, we
investigate surface instability of a soft elastic solid under
both pre-stretch and gravity using analytical analyses and nu-
merical simulations. We found that the magnitude of gravity
may determine the selection of surface instability mode
when the soft solid is under compression. When the gravity
is small, a compressed surface develops to crease instability.
When the gravity is large, wrinkle is formed prior to the
crease. The transition between crease instability and wrinkle
instability is governed by magnitude of gravity. It has been
shown that wrinkling of a uniform elastomer is extremely
unstable and very difficult to observe.13 In the article, we
demonstrate that large gravitational force may stabilize the
wrinkles on the surface of an elastomer under compression.
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FIG. 4. Comparison of the critical strain of the onset of wrinkles and crease
under gravity. The two critical conditions intersect at a' 3.8, indicating the
possible transition between crease and wrinkle state. When a< 3.8, crease is
the surface instability mode when an elastomer is under compression. For
a> 3.8, wrinkle is the surface instability mode.
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