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A hybrid beam with a gel layer bonded on the top of
an elastic non-swellable substrate has been commonly
adopted to make various sensors and actuators.
Usually, different models need to be developed for
the hybrid beam when different gels are used in
the system. In this article, based on the generalized
ideal elastomeric gel model, we formulate a unified
relationship between the swelling of hydrogels and
the bending curvature of the elastic beam, which is
independent of specific swelling mechanisms of gels.
We further illustrate that the equations derived in the
article can be used to validate the ideal elastomeric gel
model and measure the elasticity of polymer networks
of the gels.

1. Introduction
Gel is a network which can swell by absorbing solvent
molecules. The amount of swelling can be affected by
environmental humidity [1], temperature [2], pH value
[3,4], light intensity [5], biological agents [6,7], etc.
Thanks to this property, gels are being widely developed
for a variety of sensors and actuators [8–10]. Among all
the structures, a hybrid system with a gel layer on the
top of an elastic non-swellable substrate has often been
adopted [4,11]. For example, Bashir et al. [12] deposited
a pH-sensitive hydrogel on the top of a microcantilever
to measure the environmental pH value by detecting
the deflection of the microcantilver. Similar structures
with different hydrogels have been exploited to measure
the concentrations of various ions or even glucose [7].
However, a theoretical formulation and analyses of such
a hybrid system is limited, especially when considering
the availability of all kinds of responsive gels.

To study the system with a gel layer bonded on an
elastic non-swellable substrate, the swelling behaviours
of constrained gels in different conditions need to be

2015 The Author(s) Published by the Royal Society. All rights reserved.
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formulated first. In previous studies, nonlinear field theories for various responsive gels have
been developed by different researchers including us [2,3]. For example, large deformation and
stresses in a temperature-sensitive hydrogel with different constraints have been formulated by us
and compared with experiments [2]. We have also studied the deformation of a constrained pH-
sensitive hydrogel in solution with different concentrations of ions and pH values. Apparently,
the models for different gels are dramatically different. As a consequence, the model of the hybrid
beam composed of different types of gels has to be different.

Recently, a highly unified model, the ideal elastomeric gel model, has been proposed by us
and verified for several different responsive gels experimentally [13]. Based on two fundamental
assumptions, (i) the mixing of polymer, solvent and different solutes is independent of the
stretching polymer network, and (ii) individual molecules are incompressible, we obtain the
equations of state of different gels in a unified form. The details of the molecular structure of
the gel and different environmental conditions are described by a scalar function, the osmosis
function, which can be viewed as material properties and measured independently by conducting
simple experiments.

In this article, we will generalize the ideal elastomeric gel model and investigate the bending
of hybrid beams by a generalized ideal elastomeric gel. Using a generalized ideal elastomeric
gel model, we will develop the relationship between the bending curvature of the beam and
the swelling of gels. The relationship can be written in a unified form. We will also illustrate
that the beam bending experiments can be used to validate the generalized ideal elastomeric
gel model. Finally, we adopt the neo-Hookean model and the Gent model for characterizing
stretching polymer network to obtain a specific relationship between the swelling of hydrogels
and the bending of the hybrid beam.

2. Generalized ideal elastomeric gel
Figure 1 illustrates a block of an elastomeric network. In the reference state, the block is a dry
network, of dimensions L1, L2 and L3. In the current state, the block is subject to forces P1, P2 and
P3, and is submerged in an aqueous solution of fixed chemical potential of water, μs, and of other
solutes, μi. In the current state, the block absorbs Ms number of water molecules, Mi number of
other particles and the dimensions of the block become l1, l2 and l3. The Helmholtz free energy of
the block in the current state is denoted as F.

When the block changes the dimensions by small amounts δl1, δl2 and δl3, the applied forces
do work P1δl1 + P2δl2 + P3δl3. When the number of water molecules in the block increases by δMs

and the number of other molecules in the block increases by δMi, the chemical potential of water
in the surrounding aqueous solution does work μsδMs and μiδMi. At a constant temperature,
when the hydrogel equilibrates with the applied forces and the surrounding aqueous solution,
the change in the Helmholtz free energy of the block equals the sum of the work done by the
applied forces and the work done by the chemical potential of water and different solutes:

δF = P1δl1 + P2δl2 + P3δl3 + μsδMs +
∑

i

μiδMi. (2.1)

The dimensions of the block, l1, l2 and l3, can vary independently from the number of water
molecules in the hydrogel, Ms, and the number of other solutes in the hydrogel, Mi. The condition
of equilibrium (2.1) holds for arbitrary and independent small variations of the independent
quantities: l1, l2, l3, Ms and Mi. However, these quantities are usually connected by the following
considerations [14]. The volume of the block in the current state l1l2l3, to a good approximation,
equals the sum of the volume of the dry network L1L2L3, the volume of the absorbed water ΩsMs

and the volume of other solutes
∑

i ΩiMi,

l1l2l3 = L1L2L3 + ΩsMs +
∑

i

ΩiMi, (2.2)
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Figure 1. (a) In the reference state, a dry network of polymers contains no water and is stress-free. (b) In the current state,
the network is in equilibriumwith applied forces, and with an aqueous environment of a fixed chemical potential of water and
different solutes. (Online version in colour.)

where Ωs is the volume per water molecule and Ωi is the volume of other solutes. This
approximation is known as molecular incompressibility and commonly adopted in analysing
swelling of gels in the literature [14].

The relation (2.2) places a constraint among the variables l1, l2, l3, Ms and Mi. We will regard
l1, l2, l3 and Mi as independent variables, in terms of which we express Ms using (2.2).
Consequently, the variation of the number of water molecules in the hydrogel relates to the
variations of the dimensions and other solutes:

δMs = l2l3
Ωs

δl1 + l1l3
Ωs

δl2 + l1l2
Ωs

δl3 −
∑

i

Ωi

Ωs
δMi. (2.3)

Inserting (2.3) into (2.1), we obtain that

δF =
(

P1 + l2l3μs

Ωs

)
δl1 +

(
P2 + l1l3μs

Ωs

)
δl2 +

(
P3 + l1l2μs

Ωs

)
δl3 +

∑
i

(
μi − μs

Ωi

Ωs

)
δMi. (2.4)

This condition of equilibrium holds for arbitrary and independent variations δl1, δl2, δl3 and δMi.
Define the concentration of water and other solutes by cs = Ms/l1l2l3 and ci = Mi/l1l2l3, and

stretches by λ1 = l1/L1, λ2 = l2/L2 and λ3 = l3/L3. Dividing both sides of (2.2) by the volume of
the swollen elastomer, l1l2l3, we obtain that

Ωscs = 1 − 1
J

−
∑

i

Ωici, (2.5)

where J = λ1λ2λ3. This expression places a constraint among the five variables: λ1, λ2, λ3, cs and ci.
Define the nominal density of the Helmholtz free energy by W = F/(L1L2L3), true stresses by

σ1 = P1/(l2l3), σ2 = P2/(l1l3) and σ3 = P3/(l1l2). Dividing both sides of equation (2.4) by L1L2L3,
we obtain that

δW =
(

σ1 + μs

Ωs

)
λ2λ3δλ1 +

(
σ2 + μs

Ωs

)
λ1λ3δλ2 +

(
σ3 + μs

Ωs

)
λ1λ2δλ3

+
∑

i

(
μi − μs

Ωi

Ωs

)
λ1λ2λ3δci. (2.6)

This condition of equilibrium holds for arbitrary and independent variations δλ1, δλ2, δλ3 and δci.
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As a material model, the nominal density of the free energy is taken to be a function of
independent variables:

W = W(λ1, λ2, λ3, ci). (2.7)

Owing to the constraint (2.5), the concentration of water is excluded from the list of the
independent variables in (2.7). At a fixed temperature, when the block deforms by small amounts,
δλ1, δλ2 and δλ3, and the number of solutes by small amounts, δci, the free energy varies by

δW = ∂W
∂λ1

δλ1 + ∂W
∂λ2

δλ2 + ∂W
∂λ3

δλ3 +
∑

i

∂W
∂ci

δci. (2.8)

A combination of (2.6) and (2.8) gives that

[
∂W
∂λ1

−
(

σ1 + μs

Ωs

)
λ2λ3

]
δλ1 +

[
∂W
∂λ2

−
(

σ2 + μs

Ωs

)
λ1λ3

]
δλ2 +

[
∂W
∂λ3

−
(

σ3 + μs

Ωs

)
λ1λ2

]
δλ3

+
∑

i

[
∂W
∂ci

−
(

μi − μs
Ωi

Ωs

)
J
]

δci = 0. (2.9)

When the hydrogel equilibrates with the surrounding aqueous solution and the applied forces,
(2.9) holds for arbitrary and independent variations δλ1, δλ2, δλ3 and δci. Consequently, the
coefficient in front of each of the four variations in (2.9) must vanish, leading to four equations:

σ1 = ∂W(λ1, λ2, λ3)
λ2λ3∂λ1

− μs

Ωs
, (2.10)

σ2 = ∂W(λ1, λ2, λ3)
λ1λ3∂λ2

− μs

Ωs
, (2.11)

σ3 = ∂W(λ1, λ2, λ3)
λ1λ2∂λ3

− μs

Ωs
(2.12)

and μi = −μsJ
Ωi

Ωs
− ∂W

∂ci
. (2.13)

In many gels, the density of the cross-links is very low. For example, each polymer chain may
consist of over a thousand monomers. Consequently, to the first approximation, we may neglect
the effect of the cross-links on solution, and simply write the free energy of the gel as the sum

W = Ws(λ1, λ2, λ3) + Wmix(cs, ci), (2.14)

where Ws is the free energy due to the stretching of the network, and Wmix is the free energy due
to the mixing of the polymers and the solvent.

Inserting the above free energy function in (2.10)–(2.13), and using the constraint (2.5), we
obtain that

σ1 = ∂Ws(λ1, λ2, λ3)
λ2λ3∂λ1

+ ∂Wmix(cs, ci)
J2Ωs∂cs

− μs

Ωs
, (2.15)

σ2 = ∂Ws(λ1, λ2, λ3)
λ3λ1∂λ2

+ ∂Wmix(cs, ci)
J2Ωs∂cs

− μs

Ωs
, (2.16)

σ3 = ∂Ws(λ1, λ2, λ3)
λ1λ2∂λ3

+ ∂Wmix(cs, ci)
J2Ωs∂cs

− μs

Ωs
(2.17)

and μi = − Ωi

Ωs
μs − ∂Wmix(cs, ci)

J∂ci
. (2.18)

Equations (2.15)–(2.18), along with (2.5), constitute the equations of state of a hydrogel.
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By using equation (2.18), the concentration of the solutes ci can be expressed as a function of
the chemical potential μi and μs, as well as the volume matrix change of the gel, J. As a result,
equations (2.15)–(2.17) can be written as

σ1 = ∂Ws(λ1, λ2, λ3)
λ2λ3∂λ1

− Π , (2.19)

σ2 = ∂Ws(λ1, λ2, λ3)
λ3λ1∂λ2

− Π (2.20)

and

σ3 = ∂Ws(λ1, λ2, λ3)
λ1λ2∂λ3

− Π , (2.21)

with Π = (∂Wmix(cs, ci))/(J2Ωs∂cs) − μs/Ωs.
The equations of state (2.19)–(2.21) describe the mechano-chemical interaction of the

hydrogels. In particular, the term Π has the dimension of stress, and is known as osmotic pressure
in a solution. Π only depends on the volume of a gel as well as the chemical potential of all the
solvent particles, but does not depend on the cross-link density and deformation of the polymer
chain. Equations ((2.19)–(2.21)) also work for polymer solutions by letting the elasticity equal zero,
and the stress corresponds to osmotic pressure. Therefore, Π can be measured independently
using a polymer solution.

3. Beam bending by an ideal elastomeric gel
Figure 2 shows a layer of hydrogel, with initial swelling ratio λ1 = λ2 = λ3 = λpre, attached to an
elastic and non-swellable substrate. With the swelling of the hydrogel, compressive stresses in
lateral directions build up in the layer of hydrogel, which causes the bending of the hybrid beam.
Usually, the bending of the substrate is small and the deformation of the hydrogel can be assumed
approximately homogeneous. The stress in the vertical direction is zero, i.e.

σ3 = 0. (3.1)

Inserting (3.1) into (2.21), we have that

Π = ∂Ws(λ1, λ2, λ3)
λ1λ2∂λ3

. (3.2)

Inserting (3.2) into (2.19) and (2.20), we can further obtain that

σ1 = ∂Ws(λ1, λ2, λ3)
λ2λ3∂λ1

− ∂Ws(λ1, λ2, λ3)
λ1λ2∂λ3

(3.3)

and

σ2 = ∂Ws(λ1, λ2, λ3)
λ1λ3∂λ2

− ∂Ws(λ1, λ2, λ3)
λ1λ2∂λ3

. (3.4)

Equations (3.3) and (3.4) indicate that the lateral stresses only depend on the swelling ratio in
the vertical direction λ3, but do not depend on the explicit form of Π . In other words, with fixed
lateral stretches for a gel, the same deformation in the vertical direction will give rise to the same
amount of lateral stresses, no matter what swelling mechanism is underlined (e.g. variation of
humidity, pH, temperature). We would like to point out that if the lateral compressive stress is
large enough, creases may develop on the surface of gel. The emergence of creases can change the
magnitude of compressive stresses and bending moment, which is beyond the scope the article.

Since the modulus of the gel is usually much smaller than the modulus of the substrate, the
bending stiffness of the gel is negligible and the neutral plane for the hybrid beam sits on the
middle plane of the elastic non-swellable substrate during the gel swelling. For instance, in one
of our recent experiments [15], the modulus of the substrate is 2.5 GPa and the modulus of the
hydrogel is only in the order of 1 kPa. In practice, the above assumption should be accurate
enough if the modulus of the substrate is at least two orders of magnitude larger than the modulus
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Figure 2. (a) A dry polymer network; (b) a partially swollen network attached to an elastic non-swellable substrate; and (c) the
beam is bent by the swelling of gel when it is submerged in a solution. (Online version in colour.)

of the gel. Therefore, the moment per unit length in the width direction applied to the substrate
by the hydrogel is given by

M = bs

2
σ1λ3H(λ3H + hs), (3.5)

where bs, hs is the width and thickness of the non-swellable substrate, H is the thickness of the gel
layer in dry state.

The curvature can be calculated by using classic beam theory

�κ = M
EsIs

, (3.6)

where Es and Is are Young’s modulus and second moment of the transverse plane of the substrate,
and �κ is the curvature change of the substrate due to the swelling of the hydrogel. As pointed
out in Janssen et al. [16], the width of the substrate is usually much larger than its thickness. The
elastic substrate should be viewed as a plate instead of a beam. Therefore, to be more precise,
Es in (3.6) should be replaced by Es/(1 − νs), where νs is Poisson’s ratio of the substrate. Such
replacement is valid for all the following equations in the article.

A combination of (3.5) and (3.6) gives

�κ = 6σ1

Esh3
s

(λ2
3H2 + λ3Hhs), (3.7)

which links the compressive stress in the equilibrium state to the change of the curvature of the
beam. In (3.7), we assume the elastic substrate has a rectangular cross section with height hs.
It was pointed out by one of the anonymous reviewers that equation (3.7) can be reduced to
Stoney’s formula [17] when the thickness of the gel is much smaller than the thickness of the
substrate, i.e. λ3H � hs. In consequence, equation (3.7) can be viewed as an extension of Stoney’s
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formula without assuming the gel thickness to be much smaller than the substrate thickness. A
combination of (3.3) and (3.7) is the direct consequence of the generalized ideal elastomeric gel
model, so the two equations can be used to validate the model.

4. Elasticity of cross-linked polymer network
To obtain the equations in §3, we made the following assumptions: (i) the system is in the
equilibrium state; (ii) the gel is much softer than the elastic substrate; (iii) the deformation and
deflections (more precisely, slope) of the elastic substrate is small; (iv) the generalized ideal
elastomeric gel model is valid, which is independent of the specific type and swelling mechanisms
of gels; and (v) no surface instabilities such as creases happen.

For the free energy of a specific gel, the expression for mixing free energy among polymer,
solvent and different solutes is usually very complex and under intensive debates [18–21]. The
elasticity of a polymer network, however, can often be well captured by several models, such as
the neo-Hookean model [22], the Gent model [23], the Arruda–Boyce model [24], the Mooney–
Rivilin model [25,26] and the Ogden model [27]. In this section, we use the neo-Hookean model
and the Gent model to get explicit expressions between the swelling of gels and the bending of
the beam.

(a) Neo-Hookean model
When the deformation of the polymer network is not very large, its elasticity can usually be
modelled by the neo-Hookean model. Specifically, the free energy density of the stretching
polymer network is given by

Ws = 1
2

NkT(λ2
1 + λ2

2 + λ2
3 − 3 − 2 log(J)). (4.1)

Plugging (4.1) into (3.2)–(3.4), we have

Π = NkT
(

λ3

λ1λ2
− 1

λ1λ2λ3

)
, (4.2)

σ1 = NkT
1
λ2

(
λ1

λ3
− λ3

λ1

)
(4.3)

and σ2 = NkT
1
λ1

(
λ2

λ3
− λ3

λ2

)
. (4.4)

For equal-biaxial stretch, we have λ1 = λ2 = λpre and σ1 = σ2 = σ ; (4.2) and (4.3) become

Π = NkT

λ2
pre

(
λ3 − 1

λ3

)
(4.5)

and

σ = NkT
λpre

(
λpre

λ3
− λ3

λpre

)
. (4.6)

Plugging (4.6) into (3.7), we obtain that

�κ = NkT
Es

6h0

h2
s

(
1 −

(
λ3

λpre

)2
)(

λ3

λpre

h0

hs
+ 1

)
, (4.7)

where h0 = Hλpre. Equations (4.5)–(4.7) are valid for all kinds of hydrogel if the elasticity of the
polymer network can be described by the neo-Hookean model. The lateral stress σ as a function
of vertical stretch λ3 is plotted in figure 3a. The change of curvature �κ as a function of vertical
stretch λ3 is plotted in figure 3b. A combination of (4.2) and (4.7) can be used to experimentally
measure the osmosis function Π .
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Figure 3. (a) Lateral compressive stress as a function of the vertical swelling ratio and (b) bending curvature as a function of
the vertical swelling ratio. (Online version in colour.)

(b) Gent model
When the stretch of the polymer network is large, stiffening effects need to be considered. The
Gent model is one of the models taking account of stiffening of polymer chains. The free energy
density of the stretching polymer network is given by

Ws = 1
2

NkT

[
Jlim log

(
1 − λ2

1 + λ2
2 + λ2

3
Jlim

)
+ 2 log J

]
. (4.8)

Similarly, for equal-biaxial stretch, the lateral stress and the change of the curvature of the
beam are

σ = NkT
λpre

(
λpre

λ3
− λ3

λpre

)/(
1 −

(
2λ2

pre + λ2
3 − 3

Jlim

))
(4.9)

and

�κ = NkT
Es

6h0

h2
s

(
1 −

(
λ3

λpre

)2
)(

λ3

λpre

h0

hs
+ 1

)/(
1 −

(
2λ2

pre + λ2
3 − 3

Jlim

))
. (4.10)

The lateral stress σ as a function of vertical stretch λ3 is also plotted in figure 3a. The change of
curvature �κ as a function of vertical stretch λ3 is plotted in figure 3b. In experiments, figure 3b
can be used to determine the elasticity of the polymer network of hydrogels.

5. Conclusion
In summary, we investigated the bending of a beam with a gel layer bonded on top of an elastic
non-swellable substrate. We adopted the generalized ideal elastomeric gel model to obtain the
relationship between the swelling of the gel layer and the bending curvature of the substrate
underneath. Since the obtained equations are only based on the ideal elastomeric gel model, they
are valid for most gels and independent of specific swelling mechanisms of the gel. Finally, we
also plugged specific models of the stretching polymer network to the generalized equations.
Unfortunately, we cannot find any quantitative experimental measurement in the literature that
can be directly compared with our predictions. We plan to conduct experiments by ourselves and
use various gels in the beam bending system to validate the model proposed in the paper. We
also expect the model developed in this article to be useful in characterizing different types of
hydrogels and the design of gel actuators and sensors.

Data accessibility. Figure 3 is plotted using Matlab.
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