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A small cavity inside a swollen elastomer may grow or shrink, depending on the external stresses
applied onto the elastomer, surrounding humidity, and boundary constraints of the elastomer. In
this article, we study the variation of the size of a small cavity inside a swollen elastomer when
environmental humidity changes. In the model, the surface of the swollen elastomer is coated by a
non-swellable but permeable elastomer shell. Our analysis shows that the cavity shrinks with the
increase of humidity, while the cavity grows with the decrease of humidity. Interestingly, with the
decrease of the humidity, the cavity grows slowly and continuously first; when the humidity is
lower than a critical value, the cavity may grow discontinuously, jumping from a small one to a big
one, which is analogous to first-order phase transition. In this paper, we explore the effects of initial
swelling ratio and the boundary constraint of the swollen elastomer on its cavitation behavior.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918278]

I. INTRODUCTION

Most elastomers can swell by imbibing solvent. The
amount of solvent in the elastomer depends on the molecu-
lar interaction between solvent and the elastomer, external
stresses applied onto the elastomer, and other external con-
ditions such as humidity and temperature. In particular,
some polymeric elastomers can absorb a large amount of
water and swell significantly. Recently, swelling elastomers
have been intensively explored in diverse applications,
ranging from swellable packers in oil field1 to soft actuators
and sensors.2–6 In the applications of swollen elastomer,
different mechanical instabilities have been observed and
studied. For instance, it has been shown that creases, a
newly identified mechanical instability mode, can form on
the surface of a constrained swelling gel when its swelling
ratio is beyond a critical value.7,8 As another example, a
hydrogel sheet with inhomogeneous distribution of swelling
ratio can swell to various intriguing three-dimensional
structures.9 In this article, we study a new type of chemo-
mechanical instabilities in a partially swollen elastomer:
cavitation instability.

Cavitation in a dry elastomer has been recognized as
one important failure mode.10–15 An initially infinitesimal
cavity inside an elastomer may grow continuously or discon-
tinuously when the elastomer is subjected to internal or
external stresses. Compared to cavitation instabilities in dry
elastomers, cavity growth in a swollen elastomer has been
much less studied. In particular, a swollen elastomer can
respond to both mechanical and chemical stimuli, so the cav-
itation in a swollen elastomer depends on both mechanical
and chemical loading conditions.

Cavitation or crack propagation in swollen elastomer,
caused by osmosis, has been often observed in both engineering
materials and biological materials. For example, osmosis-
induced shrinkage of nucleus pulposus in degenerative interver-
tebral discs can cause propagation of cracks and expansion of
cavities.16 As another example, large cavities in some dried
vegetables and fruits can be also frequently observed in daily
life. In a recent paper, we have found that a small cavity in a
fully swollen elastomer with constraint can grow discontinu-
ously with decreasing the chemical potential of solvent in the
environment.17 In this paper, we extend our previous work and
study cavitation instability in a partially swollen gel with elastic
constraints. We further explore the influence of initial swelling
ratio and the boundary constraint of the swollen elastomer on
its cavitation behavior.

II. MODEL OF CAVITATION

Fig. 1 sketches the model we are going to study in the
article. A swollen elastomer containing a small cavity is
coated by a non-swellable but permeable elastomer shell.
The solvent in the elastomer is assumed to be water in our
model. When the external humidity increases, the cavity in
the swollen elastomer shrinks with the further swelling of
the elastomer. When the humidity decreases, the cavity
enlarges with deswelling of the elastomer core. To study the
change of the cavity size with humidity, we will compute the
total free energy of the whole system including the swollen
elastomer core and the non-swellable elastomer shell as a
function of the radius of the cavity.

As illustrated in Fig. 1, we take the initial state of a
stress-free and partially swollen elastomer as reference state.
The linear swelling ratio in the initial state is denoted by k0.
Based on Flory-Rehner’s theory,18,19 Helmholtz free energy
density of a swollen elastomer with deformation gradient FiK

is given by
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where N is the number of polymer chains per volume, k is
the Boltzmann constant, T is the temperature, X is the vol-
ume of a water molecule, and v is the dimensionless interac-
tion parameter, which is set to be 0.2 in this study. NX is a
dimensionless measurement of elastic modulus of the poly-
mer network, which is taken to be 10"3 in our calculation.

Non-swellable elastomer is assumed to be incompressi-
ble neo-Hookean material, so the free energy density of the
elastomer shell is
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1

2
G FiKFiK " 3ð Þ "P det Fð Þ " 1ð Þ; (2)

where G is small deformation shear modulus and P is
Lagrange multiplier.

A combination of the free energy density (1) and equi-
librium thermodynamics gives the equation of state of a
swollen elastomer,
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where rij is the true stress and l is the chemical potential
of water in the environment, which can be determined by
relative humidity (RH) in the surrounding environment:
l ¼ kT log ðRHÞ.

Likewise, the equation of state for the non-swellable
elastomer shell is

rij ¼ GFjKFiK " dijP; (4)

which is known as neo-Hookean model. The incompressi-
bility condition of the elastomer shell can be written as
detðFÞ ¼ 1.

We assume the deformation in the core-shell structure
illustrated in Fig. 1 is spherically symmetric, and a material

point in the reference state marked by R moves to r in the
current state as shown in Fig. 1. Consequently, the hoop and
radial stretches in the core-shell structure can be written as

kr ¼
dr

dR
; (5)

kh ¼
r

R
; (6)

in which r is a single variable function of R.
In a spherical coordinate system, force balance equation

can be written as

drr

dr
þ 2

rr " rh

r
¼ 0: (7)

Plugging Eqs. (3)–(6) into Eq. (7), we can obtain a second
order ordinary differential equation of r(R) for both swollen
elastomer core and the non-swellable elastomer shell.

Both radial stress and hoop stretch across the interface
between the elastomer shell and the core are continuous, so
we have

rrðR ¼ BþÞ ¼ rrðR ¼ B"Þ; (8)

khðR ¼ BþÞ ¼ khðR ¼ B"Þ: (9)

The outer surface of the elastomer shell is stress free, so,

rrðR ¼ Bþ HÞ ¼ 0: (10)

In our model, A/B is set to be 1/50 and H=B ¼ 0:256.
To investigate equilibrium configuration and possible

instabilities of the core-shell system in different conditions,
we compute the deformation field in the structure with differ-
ent cavity size a (Fig. 1). Using the obtained deformation
field, we calculate the Gibbs free energy of the core-shell
system through the following integration:

F ¼
ð

V1

ðWh " lCÞdV þ 4pa2cþ
ð

V2

WsdV; (11)

where C is the concentration of water and c is the surface
energy density of the cavity, which is set to be ck0=NkTA
¼ 20. V1 is the volume of the swollen elastomer and V2 is
the volume of the non-swellable elastomer shell. In Eq. (11),
we also take account of surface energy of the cavity.

FIG. 1. A stress-free elastomer with initial swelling and a small cavity is taken as reference state. (a) The swollen elastomer is coated by a non-swellable but
permeable elastomer shell. (b) At high humidity, the elastomer swells with decreasing the size of the cavity. (c) At low humidity, the swollen elastomer shrinks
with enlarging the cavity size. A material point in the reference state marked by its radius R in (a) moves to r in the deformed state ((b) and (c)).
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III. RESULTS AND DISCUSSIONS

We first study the influences of initial swelling ratio of
the elastomer core on the cavitation behaviors. Figures 2(a)
and 2(b) plot the free energy landscape of the swollen elasto-
mer constrained by a rigid shell with two different initial
swelling ratios k0 ¼ 1:436 and k0 ¼ 1:307 for different envi-
ronmental humidity. For certain ranges of humidity, free
energy landscape in Figs. 2(a) and 2(b) shows double well
structure, which is a reminiscent of first-order phase transi-
tion. When humidity is high, the swollen elastomer with a
small cavity has the lowest free energy. When humidity is
low, the swollen elastomer with a large cavity has the lowest
energy. At a critical humidity, the swollen elastomer has two
minimal free energy of the same magnitude, corresponding
to a small cavity and a large cavity, respectively.

We assume that in equilibrium, the swollen elastomer
stays in the configuration with lowest free energy as shown
in Figs. 2(a) and 2(b). Figure 3 plots the cavity size in the
elastomer as a function of humidity with two different initial
swelling ratios. Discontinuous growth of cavity in the elasto-
mer is illustrated in Fig. 3 for nonzero surface energy den-
sity. For comparison, Fig. 3 also plots the growth of cavity in
the elastomer when surface energy is neglected. It can be
seen from Fig. 3 that the growth of cavity in the elastomer

becomes continuous if surface tension of the cavity is negli-
gible. The quantitative influences of initial swelling ratio of
the elastomer on the cavitation behavior have also been
shown in Fig. 3: discontinuous change of cavity size happens

FIG. 2. The free energy landscape of a swollen spherical elastomer contain-
ing a cavity and constrained by a rigid shell at different humidity. The initial
swelling ratio in (a) is k0 ¼ 1.436 and in (b) is k0 ¼ 1.307. In the calcula-
tion, surface energy density is taken as ck0=ðNkTAÞ ¼ 20. F0 is the free
energy of the same elastomer without cavity.

FIG. 3. The size of the cavity as a function of external humidity in a swollen
elastomer constrained by a rigid shell. Solid line is for surface tension
ck0=ðNkTAÞ ¼ 20 and the dashed line is for zero surface tension.

FIG. 4. The distribution of (a) radial stretch and (b) hoop stretch in a swollen
elastomer constrained by a rigid shell for different humidity. The initial
swelling ratio of the elastomer is k0 ¼ 1.436. When the humidity is 95%,
with zero surface energy density, there is no deformation in the elastomer as
illustrated by the black bold lines in the figure.
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at lower humidity for the elastomer with smaller initial swel-
ling ratio.

In Fig. 4, we plot the field of hoop stretch and radial
stretch in the elastomer with rigid constraint for different hu-
midity. As shown in Figs. 4(a) and 4(b), for initial swelling
ratio k0 ¼ 1:436, there is no deformation in the elastomer
when the environmental humidity is 95% and surface energy
density is assumed to be zero. With nonzero surface energy
density (ck0=ðNkTAÞ ¼ 20), when the humidity is higher
than 95%, the stretch in radial direction is tensile but in hoop
direction is compressive as shown in Figs. 4(a) and 4(b). On
the contrary, when the humidity is lower than 95%, we can
see compressive stretch in radial direction but tensile stretch in
hoop direction. We would like to point out that, in Fig. 4(a),
the radial stretch near the cavity surface is very small but
always positive. In the calculation, we assume the deformation
in the elastomer is elastic. In practice, elastomer may fracture
when the deformation is too large.20

We next study the effects of the external boundary con-
straint on the cavitation behavior of the swollen elastomer.
Fig. 5 plots the free energy landscape of the core-shell sys-
tem containing a small cavity. The initial swelling ratio of
the swollen core is selected to be k0 ¼ 1.307. When the shear
modulus of the elastomer shell is large: G/(NkT)¼ 200 and
the surface energy density is ck0=ðNkTAÞ ¼ 20, the free
energy landscape in Fig. 5(a) is qualitatively similar to

Figs. 2(a) and 2(b), though quantitative difference can be
clearly observed. However, when the shear modulus of the
shell is reduced to G/(NkT)¼ 1 with the same surface energy
density ck0=ðNkTAÞ ¼ 20, only a single well can be found in
the free energy landscape (Fig. 5(b)), which indicates that
discontinuous change of cavity size in the swollen elastomer
will not happen anymore.

Fig. 6 plots the size of the cavity with different con-
straint as a function of external humidity. The swollen elas-
tomer constrained by a rigid shell has the highest critical
humidity for the discontinuous jump of cavity size. With
reducing the modulus of the constraint, the critical humidity
decreases as well. Discontinuous change of cavity size does
not happen when the external elastomer shell is very soft,
e.g., G/(NkT)¼ 1. We can also find that for the same envi-
ronmental humidity, with reducing the elastic modulus of the
shell, the cavity size decreases. The size of cavity may even
decrease in the drying process due to soft external constraint
(the inset of Fig. 6).

IV. CONCLUDING REMARKS

We demonstrate the cavitation instability in a core-shell
system with swollen elastomer core and non-swellable elas-
tomer shell in the drying process, which may provide some
insights into certain failures of swollen elastomers in differ-
ent environments. We have not noticed any direct or indirect
experimental evidence of such cavitation instabilities in
swollen elastomers. We plan to conduct experiment to vali-
date our theoretical predictions in the near future.

We would also like to point out that only equilibrium
state of the system is calculated in this article. The humidity
change is assumed to be much slower than the time for sol-
vent migration. We will investigate the kinetic process of
cavitation in swollen elastomers with concerning the solvent
migration in our following studies.
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