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Shape Bifurcation of a Spherical
Dielectric Elastomer Balloon
Under the Actions of Internal
Pressure and Electric Voltage
Under the actions of internal pressure and electric voltage, a spherical dielectric elasto-
mer balloon usually keeps a sphere during its deformation, which has also been assumed
in many previous studies. In this article, using linear perturbation analysis, we demon-
strate that a spherical dielectric elastomer balloon may bifurcate to a nonspherical shape
under certain electromechanical loading conditions. We also show that with a nonspheri-
cal shape, the dielectric elastomer balloon may have highly inhomogeneous electric field
and stress/stretch distributions, which can lead to the failure of the system. In addition,
we conduct stability analysis of the dielectric elastomer balloon in different equilibrium
configurations by evaluating its second variation of free energy under arbitrary perturba-
tions. Our analyses indicate that under pressure-control and voltage-control modes, non-
spherical deformation of the dielectric elastomer balloon is energetically unstable.
However, under charge-control or ideal gas mass-control mode, nonspherical deforma-
tion of the balloon is energetically stable. [DOI: 10.1115/1.4030881]

1 Introduction

A soft dielectric membrane can deform by mechanical stretch-
ing or applying electric voltage across its thickness. Experiments
are abundant showing the interplay between electric field and
mechanics in dielectric elastomers [1–4]. For instance, voltage-
induced deformation in a free standing dielectric elastomer mem-
brane can hardly exceed 40% due to electromechanical pull-in
instability [5], while a prestretched dielectric elastomer membrane
or the membrane subjected to a dead load can deform as large as
several hundred percent by voltage without failure [6,7].

Due to the electromechanical coupling, high-energy density,
easy fabrication, and relatively low cost, dielectric elastomers
have been recently explored intensively in diverse applications,
including artificial muscles [8–11], haptic devices [12,13], micro-
pumps [14–17], and adaptive lens [18–21] to name a few. Among
all dielectric elastomer devices, spherical balloon is one of the
most frequently used geometries. For example, dielectric elasto-
mer balloons have been proposed to make reciprocating or peri-
staltic pumps by Goulbourne et al. [15,16]. Dielectric elastomer
balloons have also been developed into tactile devices [4] and
spherical actuators and generators.

The wide applications of dielectric elastomer balloon have
motivated recent studies of their deformation under different
electromechanical loading conditions. Zhu et al. [2] formulated
nonlinear vibrations of a spherical dielectric elastomer balloon
subjected to a constant internal pressure and an AC voltage.
Rudykh and Bhattacharya [22] predicted snap-through actuation
of a thick-walled dielectric elastomer balloon. Li et al. [7]
successfully harnessed the electromechanical instabilities of a
dielectric elastomer balloon to achieve giant voltage-induced
expansion of area.

While the deformation of a dielectric elastomer balloon sub-
jected to a voltage and internal pressure has been intensively stud-
ied, in most previous studies, spherical deformation is assumed if
the dielectric elastomer balloon is initially a sphere. Little efforts
have been made, if any, in studying possible nonspherical

deformation in a spherical dielectric elastomer balloon subjected
to electromechanical loading. However, on the other hand, non-
spherical shape bifurcation has been observed in experiments and
predicted in theories for a spherical elastomer balloon only sub-
jected to internal pressure. For example, Alexander [23] has
reported the observation of nonspherical deformation mode in a
neoprene spherical balloon in the inflation process. Linear pertur-
bation analyses, conducted by different researchers [24–26], pre-
dicted the existence of nonspherical deformation mode in a
spherical elastomer balloon subjected to internal pressure. More-
over, Fu and Xie [27] have recently conducted stability analyses
on the nonspherical deformation mode and shown that in certain
loading conditions, the nonspherical configuration of the balloon
can be stable.

Additionally, in the experiments conducted by Li et al. [7], a
region on the top of the dielectric elastomer balloon bulged out
significantly when the voltage was high. This phenomenon cannot
be predicted by their theoretical model. This experimental obser-
vation, combined with the previous studies of the elastomer bal-
loon only subjected to internal pressure, indicates the possible
shape bifurcation of dielectric elastomer balloon subjected to a
combination of internal pressure and electric voltage. In this arti-
cle, we study the shape bifurcation in a spherical dielectric elasto-
mer balloon subjected to internal pressure and electric voltage.
We will also conduct stability analyses for different modes of de-
formation under different electromechanical loading conditions.

The paper is organized as follows. Section 2 derives the field
equations of a spherical balloon subject to internal pressure and
electric voltage. Section 3 describes the homogeneous deforma-
tion solution of the balloon. We conduct linear perturbation analy-
ses in Sec. 4 and calculate inhomogeneous deformation of the
balloon in Sec. 5. Finally, in Sec. 6, we conduct stability analyses
on different deformation modes of the dielectric elastomer
balloon.

2 Axisymmetric Deformation of a Spherical Dielectric
Elastomer Balloon Subjected to Internal Pressure and
Electric Voltage

We investigate the deformation of a spherical balloon made by
a dielectric elastomer under the actions of internal pressure p and
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electric potential u, as shown in Fig. 1(a). The radius of the bal-
loon in the undeformed state is assumed to be R. We assume the
deformation of the balloon is axisymmetric. A Cartesian coordi-
nate x–z is introduced, with the origin located at the center of the
undeformed balloon, to describe the deformation (Fig. 1(b)). The
coordinates of a material point A in the undeformed state can be
written as

X ¼ R sin h (1)

Z ¼ "R cos h (2)

After deformation, as shown in Fig. 1(b), point A moves to A0

with the coordinate

x ¼ xðhÞ; z ¼ zðhÞ (3)

Let k1 and k2 denote the principle stretches of the membrane in
the latitudinal direction and the longitudinal direction, so we have

k1 ¼ x=X (4)

k2 ¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dh

" #2

þ dz

dh

" #2
s

(5)

The force balance in the z direction and the direction normal to
the z axis of the balloon can be written as

2S2H sin h
dz

dh
¼ pk2x2 (6)

S1
dx

dh
¼ Rk2

d

dh
S2 sin hð Þ (7)

where S1 and S2 are the nominal stresses in latitudinal direction
and longitudinal direction and H is the thickness of the balloon in
undeformed state, which is a constant. Using the definition of k1

and k2, and the geometrical relationship dx/dh¼Rk2sina and dz/
dh¼Rk2cosa, where a is the angle between the tangential direc-
tion of the deformed balloon and the z axis (Fig. 1(b)), the force
balance equations (6) and (7) can be rewritten as

dk1

dh
¼ k2

sin a
sin h

" k1 cot h (8)

dk2

dh
¼ S1 " k2

@S2

@k1

" #
@S2

@k2

" #"1sin a
sin h

" S2 " k1
@S2

@k1

" #
@S2

@k2

" #"1

cot h (9)

da
dh
¼ S1 cos a

S2 sin h
" pk1k2R

S2H
(10)

The elastomer is assumed to be incompressible, namely,

k1k2k3 ¼ 1 (11)

where k3 is the stretch in the thickness direction of the membrane.
Constitutive model of ideal dielectric elastomer is adopted here

to describe the electromechanical behaviors of the balloon mem-
brane [5]. The electric field E and the electric displacement D are
related by the linear equation

D ¼ eE (12)

where e is permittivity of the elastomer, which is independent of
the deformation and electric field. The electric field in the mem-
brane can be calculated by E¼u/h, where u is the electric poten-
tial difference between the two surfaces of the membrane and h is
the thickness of the membrane in the deformed state which may
vary from point to point. The electric displacement is equal to the
charge density, namely, D¼ dQ/da, where da is the area of an ele-
ment of the membrane in deformed state and dQ is the amount of
charge on each side of the element.

The relation between the nominal stresses and the stretches is

S1 ¼
@Wsðk1; k2Þ

@k1
" eE2

k1
(13)

S2 ¼
@Wsðk1; k2Þ

@k2
" eE2

k2
(14)

where the first terms in both the equations are elastic stress and
the second terms are Maxwell stress. Ws(k1, k2) is the stretching
free energy of the elastomer, for which we adopt Ogden model
[28]

Wsðk1; k2Þ ¼
X3

r¼1

llr

ar
ðkar

1 þ kar
2 þ ðk1k2Þ"ar " 3Þ (15)

where l is the shear modulus for infinitesimal deformation, and ar

and lr are the material constants. In this article, we use the follow-
ing material parameters: a1¼ 1.3, a2¼ 5.0, a3¼"2.0 and l1

¼ 1.491, l2¼ 0.003, l3¼"0.023. Inserting Eq. (15) into Eqs.
(13) and (14), we obtain that

S1 ¼
X3

r¼1

llr kar"1
1 " 1

karþ1
1 kar

2

 !

" eE2

k1
(16)

S2 ¼
X3

r¼1

llr kar"1
2 " 1

kar
1 karþ1

2

 !
" eE2

k2
(17)

In the southern and northern poles of the balloon, we have the
following boundary conditions:

k1ð0Þ ¼ k2ð0Þ (18)

k1ðpÞ ¼ k2ðpÞ (19)

að0Þ ¼ p
2
; aðpÞ ¼ "p

2
(20)

Using constitutive Eqs. (12), (16), and (17), the right-hand side
of Eqs. (8)–(10) can be expressed as functions of k1(h), k2(h), and
a(h). Together with the boundary conditions (18)–(20), the

Fig. 1 (a) Schematics of a dielectric elastomer balloon sub-
jected to internal pressure and electric voltage. (b) The balloon
with axisymmetric deformation. Dashed line represents the
undeformed spherical balloon and solid line represents shape
of the balloon after deformation.
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deformation of the dielectric elastomer balloon under different
electromechanical loadings can be calculated.

3 Homogeneous Deformation

Apparently, homogeneous deformation of the spherical balloon
is a solution to the equations in Sec. 2, i.e.,

k1 ¼ k2 ¼ k0 (21)

S1 ¼ S2 ¼ S0 (22)

E ¼ E0 (23)

The values k0, S0, and E0 depend on the loading conditions,
namely, the magnitude of electric potential u and internal pressure
p. Because the deformation in the balloon is homogeneous, the
electric field and stress in the balloon are also homogeneous. As a
consequence, a combination of Eqs. (8)–(10) results in a single
nonlinear algebra equation for determining stretch k0

pR

lH
k2

0 þ 2
u

H
ffiffiffiffiffiffiffi
l=e

p
 !2

k3
0 " 2

X3

r¼1

lrðk
ar"1
0 " k"2ar"1

0 Þ ¼ 0 (24)

where pR/lH is the dimensionless pressure and u=ðH
ffiffiffiffiffiffiffi
l=e

p
Þ is

the dimensionless electric potential. With knowing the homogene-
ous stretch k0, the volume of the balloon can be easily calculated.
Figure 2 plots the volume of the balloon as a function of internal
pressure for three different electric voltages. All the three p–V
curves have a N shape, which are consistent with the results
reported previously [25,27]. Due to the N shaped p–V curve, it is
known that under pressure control, snap-through instability in the
balloon can happen when the pressure exceeds the peak value in
the p–V curve.

4 Linear Perturbation Analysis

With homogeneous deformation, the dielectric elastomer bal-
loon keeps spherical shape. However, as discussed in the

Introduction, nonspherical deformation in the balloon may also
happen. We next conduct linear perturbation analysis to investi-
gate the dielectric elastomer balloon bifurcating from spherical
deformation to nonspherical deformation.

Linear perturbation is performed on the state of homogeneous
deformation with equal-biaxial stretches k0. The radial and tan-
gential displacement perturbations, dr(h) and dt(h), are assumed to
be axisymmetric. So, the coordinates of any material point after
perturbation can be written as

xðhÞ ¼ k0R sin hþ drðhÞsinhþ dtðhÞ cos h (25)

zðhÞ ¼ "k0R cos h" drðhÞ cos hþ dtðhÞ sin h (26)

Generally speaking, the perturbations of the displacement may
result in perturbations of stretches dk1 and dk2, the nominal
stresses dS1 and dS2, and the internal pressure dp. Consequently,
the force balance equations (6) and (7) can be rewritten as

2HðS0
2 þ dS2Þ

dz0

dh
þ ddz

dh

" #
sin h ¼ ðp0 þ dpÞðk0

2 þ dk2Þðx0 þ dxÞ2

(27)

ðS0
1 þ dS1Þ

dx0

dh
þ ddx

dh

" #
¼ Rðk0

2 þ dk2Þ
d

dh
ðS0

2 þ dS2Þ sin h
$ %

(28)

The upper index “0” represents the variables in the homogeneous
deformation state. All the perturbations in Eqs. (27) and (28) can
be expressed by power series of dr(h) and dt(h). To investigate the
critical conditions of the bifurcation, we only keep the linear order
terms of dr(h) and dt(h). Finally, we obtain the following eigen-
value equation of dr:

k0S0
1

@S0
1

@k1
ð1" t2Þ d

2dr

dt2
" 2t

ddr

dt

" #
þ S0

1 þ k0
@S0

1

@k1
" k0

@S0
1

@k2

" #

2S0
1 " k0

@S0
1

@k1
" k0

@S0
1

@k2

" #
¼ C S0

1 " k0
@S0

1

@k1
" k0

@S0
1

@k2

" #
t

" pR4k5
0

H

@p

@V
S0

1 þ k0
@S0

1

@k1
" k0

@S0
1

@k2

" #ð1

"1

drdt (29)

where t¼ cosh, C is a constant of the integration [26], and R is the
radius of the balloon in the reference state. Boundary conditions
for dr are d0r 0ð Þ ¼ 0 and d0r pð Þ ¼ 0. Under the pressure-control
mode, the last term in Eq. (29) is zero. Equation (29) is consistent
with the equation given in Refs. [26] and [29], and it is also
known as the Legendre’s equation, and the bounded solution is

drðtÞ ¼ DPnðtÞ þ Atþ B (30)

where A, B, and D are constants and Pn(t) is the Legendre polyno-
mial of order n. For each eigenmode, there is one eigenvalue
which corresponds to the critical condition for the bifurcation.

Detailed calculations show that the critical loading conditions
for the eigenmodes of dr with n & 2 are physically unrealistic,
which is consistent with the conclusion given by Shield [30]. So,
we next only focus on the first two eigenmodes in the balloon.

For n¼ 0, the eigenmode is a constant which corresponds to a
homogeneous perturbation

drðhÞ ¼ 1; dtðhÞ ¼ 0 (31)

and the critical condition for the bifurcation is given by

2S0
1 " k0

@S0
1

@k1
" k0

@S0
1

@k2
þ 2pR4k5

0

H

@p

@V
¼ 0 (32)

Fig. 2 The pressure–volume (p–V) relation of a spherical
dielectric elastomer balloon subjected to three different vol-
tages. During the deformation, the balloon may keep a sphere,
which is represented by the solid curves, or become nonspheri-
cal, which is represented by dashed curves. The circle and
square dots stand for the bifurcation points predicted from the
linear perturbation analysis for spherical and pear-shaped
modes, respectively. Two adjacent deformation modes with
pressure of pR=ðlHÞ ¼ 0:9 and three different voltages are
marked by triangles. The dashed-dotted lines represent ideal
gas law for two different masses of ideal gas, where m0 is the
mass of gas molecules when pressure and volume are unity.
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For n¼ 1, the eigenmode represents an inhomogeneous
perturbation

drðhÞ ¼ cos h; dtðhÞ ¼ 0 (33)

and the critical condition for the bifurcation is given by

S0
1 " k0

@S0
1

@k1
" k0

@S0
1

@k2
¼ 0 (34)

A combination of Eqs. (16), (17), and (32) or (34) gives a non-
linear algebra equation with single unknown k0, which corre-
sponds to the critical conditions of bifurcation for the mode of
n¼ 0 or n¼ 1.

The bifurcation modes for n¼ 0 and n¼ 1 are both plotted in
Fig. 3. Following the literature, we name n¼ 0 as spherical bifur-
cation mode and n¼ 1 as pear-shaped bifurcation mode. The criti-
cal conditions for the bifurcation are also calculated and plotted in
Fig. 2. The circle and square dots represent the critical conditions
for the spherical and pear-shaped bifurcation mode, respectively.
As expected, for the spherical bifurcation mode, the critical
conditions coincide with the extreme points in the p–V curve of
the balloon with homogeneous deformation.

5 Inhomogeneous Deformation

The bifurcation analysis conducted in Sec. 4 predicts that inho-
mogeneous deformation mode can exist in a spherical dielectric
elastomer balloon subjected to internal pressure and electric volt-
age. In this section, we conduct postbifurcation analysis of the
dielectric elastomer balloon by numerically solving the governing
equations of the balloon formulated in Sec. 2.

We use shooting method to numerically solve Eqs. (8)–(10).
Specifically, the values of the three variables in the southern pole
of the balloon are set to be k1(0)¼ k2(0)¼ ka and a(0)¼p/2.
Those values are used as the initial conditions and Eqs. (8)–(10)
can be numerically integrated to obtain k1(h), k2(h), and a(h). We
continuously vary the value of ka until the boundary conditions in
the northern pole: k1(p)¼ k2(p) and a(p)¼"p/2 are all satisfied.

With a given pressure and electric voltage, we can obtain the
solutions for homogeneous deformation of the balloon, which
agree with the solution described in Eq. (24). As expected, in
addition to the homogeneous deformation, for a certain range of
pressure with different voltages, we can also obtain the solution

describing inhomogeneous deformation of the balloon, which is
also plotted in Fig. 2 by dashed curves.

To quantitatively describe Fig. 2, we mark several key pres-
sures for three different voltages, which are maximum pressure
pmax, minimum pressure pmin obtained from the homogeneous
deformation, and critical pressures for the pear-shaped bifurca-
tions predicted from the linear perturbation analysis: pcr1 and pcr2.
All the four pressures depend on the magnitude of the voltage. For
a given voltage, when p< pmin (or p> pmin), the balloon has one
equilibrium solution, corresponding to spherical deformation. For
pmin< p< pmax, three equilibrium solutions of spherical deforma-
tion can be obtained, and a pear-shaped deformation mode exists
if the pressure is between the two critical pressures, namely,
pcr2< p< pcr1. It is also shown in Fig. 2 that the electric field
applied to the dielectric elastomer leads to a lower critical pres-
sure for the bifurcation.

Figure 2 also shows that as the voltage is increased, the differ-
ence of the p–V curve between the homogeneous deformation and
inhomogeneous deformation increases. The results can be qualita-
tively understood as follows: when the balloon bifurcates from a
spherical shape with homogeneous deformation to a nonspherical
shape, the thickness of the balloon membrane becomes inhomoge-
neous, which results in inhomogeneous electric field since the
voltage across the membrane is a constant. The inhomogeneous
electric filed will induce inhomogeneous Maxwell stress which in
turn further increases the deviation of the nonspherical bifurcated
shape from the spherical shape.

Figure 4 plots the shapes and electric field of the dielectric
elastomer balloon in two adjacent deformation modes marked in
Fig. 2. When the electric potential is zero, the differences of the
volume and the geometry between the spherical and nonspherical
modes are almost negligible. As the voltage increases, the volume
and the geometrical difference between the two modes become
more and more obvious. For the nonspherical deformation mode,
the electric field in the balloon membrane is highly
inhomogeneous.

Figure 5 plots the electric field, stretch, and stress distribution
in the dielectric elastomer balloon with the deformation modes as
shown in Fig. 4 for u=ðH

ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:16. Compared to the homo-

geneously deformed state, the concentration factor of the electric
field can be as large as 500% and the concentration factor of
stresses and stretches can be as large as 200%. The high-
concentration factor explains the experimental observations by Li
et al. [7] that localized bulging out in the dielectric elastomer bal-
loon usually immediately leads to electric breakdown of the
dielectric membrane.

6 Stability Analysis

In Secs. 3 and 5, we have demonstrated that both spherically
and nonspherically deformed dielectric elastomer balloons can be
in equilibrium states. However, it is still unclear whether the equi-
librium states we obtained are stable or not. In this section, we
will conduct stability analysis.

Following the energetic method adopted by different research-
ers [27,31,32], we first derive second variation of the free energy
of the dielectric elastomer balloon system. If the second variation
of the free energy of an equilibrium state is positive definite, the
state is energetically stable. On the other hand, if there is any per-
turbation which can lead to negative second variation of the free
energy of an equilibrium state, the state is regarded as energeti-
cally unstable.

It is also known that the stability of a structure depends on its
loading method. In this article, we focus on four different ways of
applying electromechanical loadings onto the dielectric elastomer
balloon. In terms of the mechanical loading, we consider either
gradually increasing the internal pressure or the number of ideal
gas molecules inside the balloon, for which we call pressure-
control mode or ideal gas mass-control mode, respectively. In
terms of electrical loading, we consider either gradually

Fig. 3 Spherical and pear-shaped bifurcation modes calcu-
lated from the linear perturbation analysis
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increasing the voltage across the thickness of the dielectric mem-
brane or the total amount of charge on its surface, for which we
call voltage-control mode or charge-control mode, respectively.
Consequently, we have four different combinations of electrome-
chanical loading method. We next derive the second variation of
the free energy for the four different cases.

In the pressure-control and voltage-control modes, the balloon,
together with the pressure and electric voltage, forms a thermody-
namic system with the free energy given by

F ¼
ð
ðWsðk1; k2Þ þWeðk1; k2ÞÞdVm " pV " uQ (35)

where Ws(k1, k2) and We(k1, k2) are strain energy density and elec-
trostatic energy density of the membrane, dVm¼ 2pHR2sinhdh
is the volume element of the dielectric membrane, and V
¼
Ð p

0 px2z0dh is the volume of the balloon. The relationship
between electric displacement and electric field in the dielectric
membrane is assumed to be linear, the electrostatic energy is

ð
Weðk1; k2ÞdVm ¼

ðp

0

eE2

2

" #
2pHR2sinhdh (36)

where We(k1, k2)¼ eE2/2 is the electrostatic energy density.
Adopting the assumption of ideal dielectric elastomer, D¼ eE,

Fig. 4 Calculated shapes and electric field in a spherical dielectric elastomer balloon in two adjacent deformation modes
(spherical mode and pear-shaped modes) marked by triangles in Fig. 2. When the electric voltage is high, large electric field
concentration can be observed in the pear-shaped mode (right column).
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and the definition of the electric displacement, D¼ dQ/da, we
have

Q ¼
ðp

0

eEð Þ2pk1k2R2 sin hdh (37)

where da¼ 2pk1k2R2sinhdh is the area of the surface element of
the membrane in the deformed state. Putting Eqs. (36) and (37)
into Eq. (35), with the definition E¼u/h¼ k1k2u/H, the free
energy is in the pressure-control and voltage-control modes

F¼ 2pR2H

ðp

0

Wsðk1;k2Þ "
eu2

2H2
ðk1k2Þ2

" #
sinhdh" p

ðp

0

px2z0dh

(38)

Define the first two terms in Eq. (38) as

Wðk1; k2Þ ¼ Wsðk1; k2Þ "
eu2

2H2
ðk1k2Þ2 (39)

For simplicity, R is taken to be unity in the following analysis.
Following Ref. [27], the second variation of the free energy can
be expressed as

d2F ¼ 2pHR2

ðp

0

v ' Svþ 2v ' Lv0 þ v0 'Kv0ð Þdh (40)

where

S ¼
W11

R2 sin h
" W12

R3k2
x0

" #0
" pz0

HR2
0

0 0

2

4

3

5 ¼ a1 0
0 0

( )
(41)

L ¼
0

W12z0

R3k2
" px

HR2

0 0

2

4

3

5 ¼
0 a2

0 0

" #

(42)

K¼

ðk2W22x02þW2z02Þsinh

R4k3
2

ðk2W22"W2Þsinh

R4k3
2

x0z0

ðk2W22"W2Þsinh

R4k3
2

x0z0
ðk2W22z02þW2x02Þsinh

R4k3
2

2

6664

3

7775¼
a4 a5

a5 a3

" #

(43)

where W1 ¼ @W=@k1, W12 ¼ @2W=@k1@k2, etc., and v is a vector
of displacement perturbation in the x and z directions, with
v¼ [dx, dz]T and v0¼ [dx0, dz0]T.

Next, we derive the second variation of the free energy d2F of
the dielectric elastomer balloon under the ideal gas mass-control
and voltage-control modes. So, the enclosed ideal gas, the balloon,
and the electric voltage form a thermodynamic system with the
free energy given by

F ¼
ð
ðWsðk1; k2Þ þWeðk1; k2ÞÞdVm þ UðV;NÞ " uQ (44)

where A(V, N) is the gas potential energy

UðV;NÞ ¼ "kTN ln
V

V0
(45)

where T is the temperature of the gas, V and V0 are the current and
initial volume of the gas, N is the number of the gas molecules,
and k is the Boltzmann constant. Pressure is defined by
p ¼ "@U=@V ¼ kTN=V. The second variation of Eq. (44) is

d2F" kTN

V2
ðdVÞ2 ¼ 2pHR2

ðp

0

v ' Svþ 2v ' Lv0 þ v0 'Kv0ð Þdh

(46)

In the following, we study the pressure-control and charge-
control modes. When the total amount of charge on the surface of
dielectric elastomer membrane is given, the voltage u is an
unknown constant. According to Eq. (37) and the definition
E¼ k1k2u/H

E ¼ Q

2eR2K
k1k2 (47)

where K ¼
Ð p

0 pðk1k2Þ2 sin hdh.
The thermodynamic system under the pressure-control and

charge-control modes is formed by the balloon and the pressure,
and the free energy of the system is

Fig. 5 Distribution of the electric field, stretch, and nominal
stress in the dielectric elastomer balloon for homogeneous and

inhomogeneous deformation modes for u=ðH
ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:16 as

shown in Fig. 4
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F ¼
ð
ðWsðk1; k2Þ þWeðk1; k2ÞÞdVm " pV (48)

The electrostatic energy of the dielectric membrane is obtained by
putting Eq. (47) into Eq. (36), and it is expressed as

ð
Weðk1; k2ÞdVm ¼

Q2H

4eR2K
(49)

The second variation of the free energy is

d2F" Q2H

2eR2K3
ðdKÞ2 ¼ 2pHR2

ðp

0

v ' Svþ 2v ' Lv0 þ v0 'Kv0ð Þdh

(50)

where dK is the first variation of K.
For the ideal gas mass-control and charge-control modes, the

dielectric membrane balloon and the enclosed ideal gas form a
thermodynamic system with the free energy

F ¼
ð
ðWsðk1; k2Þ þWeðk1; k2ÞÞdVm " kTN ln

V

V0
(51)

Based on the previous derivations, it is easy to show that the
second variation of the free energy is

d2F" Q2H

2eR2K3
ðdKÞ2 " kTN

V2
ðdVÞ2

¼ 2pHR2

ðp

0

v ' Svþ 2v ' Lv0 þ v0 'Kv0ð Þdh (52)

Without further calculations, by comparing Eqs. (40), (46),
(50), and (52), we can conclude that for the same equilibrium
state, the second variation of the free energy is the smallest for
pressure-control and voltage-control modes but the largest for
mass-control and charge-control modes, which indicates that
pressure-control and voltage-control modes are the least stable
while the mass-control and charge-control modes are the most
stable.

It can be further proved that the second variation of free energy
for all four different loading cases can be evaluated by solving the
following eigenvalue equation [27]:

Svþ Lv0 " ðLTvþKv0Þ0 " dpx

HR2

z0

"x0

" #

" Qdu
HR6K

xðx02 þ z02Þ
sin h

" x2x0

sin h

" #0

" x2z0

sin h

" #0

0

BBB@

1

CCCA ¼ a sin hv (53)

of which the eigenmode can be viewed as the perturbation and the
eigenvalue a is exactly the second variation of the free energy

d2F. The last two terms on the left-hand side of Eq. (53) are zero
if the balloon is in the pressure-control and voltage-control modes,
while dp¼"kTNdV/V2 and du¼"QHdK/2eR2K2 for the mass-
control and charge-control modes, respectively.

The eigenvalue problem Eq. (53) can be solved by shooting
method with boundary conditions

v1ð0Þ ¼ v1ðpÞ ¼ 0 (54)

In pressure-control and voltage-control modes, we can find at
least one negative eigenvalue for nonspherical deformation mode
and the spherical deformation mode in the descending path of the
p–V curve shown in Fig. 2. The negative eigenvalue is plotted in
Fig. 6 for two different voltages. The calculation indicates that

both nonspherical deformation mode and spherical deformation
mode in the descending path of p–V curve are energetically
unstable.

For mass-control or charge-control mode, one additional con-
straint equation for the perturbations needs to be satisfied, which
is

HR2V

pp
þ
ðp

0

x2

2ða3 " aÞ
dh

" #
dp

HR2

þ
ðp

0

x4z0

ða3 " aÞ sin h
dh

" #
Qdu

HR6K
¼ "2

ðp

0

c1v1dh (55)

ðp

0

x4z0

2ða3 " aÞ sin h
dh

" #
dp

HR2

þ eR12K3

pQ2
þ
ðp

0

x4z02

ða3 " aÞ sin2 h
dh

" #
Qdu

HR6K
¼ "

ðp

0

c2v1dh

(56)

where c1 and c2 are

c1 ¼ "
a2x2

2ða3 " aÞ
þ 1

2

a5x2

a3 " a

" #0
þxz0 (57)

c2 ¼"
a2x2z0

ða3" aÞ sinh
þ a5x2z0

ða3" aÞ sinh

" #0
þ xðx02 þ z02Þ

sinh
" x2z0

sinh

" #0

(58)

Because of the additional constraints, it is much more difficult to
find a negative eigenvalue for Eq. (53). Detailed calculations
show that for all the other three loading methods, the nonspherical
deformation of the dielectric elastomer balloon is energetically
stable.

At last, we would like to add one more comment on the mass-
control and voltage-control modes. It is well known that under
pressure-control mode, snap-through instability in a balloon may
happen during its inflation process. Such instability can be
eliminated by adopting ideal gas mass-control mode. As shown in
Fig. 2, if only spherical deformation in the balloon is considered,
for all three different electric voltages, only one equilibrium

Fig. 6 Under pressure-control and voltage-control modes, sec-
ond variation of free energy of the spherical deformation and
nonspherical deformation in the descending path of p–V curve
in Fig. 2 can be negative. The solid line represents a negative
value for the spherical deformation mode, while the dashed line
shows a negative value for the nonspherical deformation mode.
The results indicate that under pressure-control and voltage-
control modes, both spherical deformation in the descending
path of p–V curve and nonspherical deformation of the dielec-
tric elastomer balloon are energetically unstable.
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solution exists for the mass-control loading mode, which is the
crossing point between the curve representing ideal gas law and
the calculated p–V curve for the balloon, so no instability will
happen. However, if nonspherical deformation is not excluded,
even in ideal gas mass-control loading mode, multiple solutions
can coexist, namely, there may be several crossing points between
the curve representing ideal gas law and the calculated p–V curves
for the balloon, as shown in Fig. 2. To be more explicit, we also
plot the mass of idea gas molecules as a function of the balloon
volume in Fig. 7 for three different voltages. For a fixed number
of idea gas molecules in a certain range, multiple equilibrium sol-
utions which correspond to spherical and nonspherical deforma-
tion of the balloon can be found. Moreover, we also found that in
the ideal gas mass-control mode, once nonspherical deformation
of the balloon is an equilibrium solution, it always has lower free
energy than the spherically deformed balloon, as shown in the
inset of Fig. 7. This indicates that the nonspherical deformation is
more energetic favorable.

7 Conclusions

This paper studies shape bifurcation of a spherical dielectric
elastomer balloon subjected to internal pressure and electric volt-
age. Using linear perturbation analysis, we obtain the bifurcation
mode and the corresponding critical conditions of a dielectric
elastomer balloon under the action of internal pressure and elec-
tric voltage. By numerically solving the governing equations of
the dielectric elastomer balloon with axisymmetric deformation
and under different electromechanical loading conditions, we
obtain both spherical deformation and nonspherical deformation
solutions for the balloon. Our calculations further show that shape
difference between two adjacent spherical and nonspherical defor-
mation modes can be greatly enhanced by increasing the electrical
voltage. The nonspherical deformation of the dielectric elastomer
balloon in turn induce large electric field concentration and stress/
stretch concentration in certain area of the balloon, which may
lead to the failure of the system. Finally, we calculate second vari-
ation of the free energy of the balloon in different equilibrium
states. Our calculations demonstrate that nonspherical deforma-
tion of the balloon can be either energetically stable or unstable
depending on the electromechanical loading method.
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