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� Application of tough hydrogel as regenerable ‘sweating skin’ for building cooling.
� Tough gel exhibits effective evaporative cooling and extraordinary cyclability.
� Charging and discharging capability of the tough gel was retained after 50 cycles.
� Tough gel cooling could lead to substantial energy saving in buildings.
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a b s t r a c t

Innovative thermal regulation technologies could provide great potential for reducing energy consump-
tion in buildings. In this work, we report, for the first time, the application of highly stretchable and tough
double network hydrogels (DN-Gels) as durable and reusable ‘sweating skins’ for cooling buildings. These
DN-Gels demonstrate outstanding cooling performance, reducing the top roof surface temperature of
wooden house models by 25–30 �C for up to 7 h after only a single water hydration charge. More impor-
tantly, compared with single network hydrogels (SN-Gels) previously studied for cooling applications,
these DN-Gels exhibit extraordinary toughness and cyclability due to their interpenetrated ionically
and covalently cross-linked networks, as demonstrated by constant cooling performance over more than
50 cycles. This excellent cyclability is further demonstrated by the unaltered mechanical properties and
charging capability of the hydrogels after many cycles, compared to fresh ones. By coating a 100 m2 roof
of a single house with tough DN-Gels, it is estimated that the annual electricity consumption needed for
air conditioning can be reduced by �290 kW h with associated CO2 emission reductions of 160 kg. Our
results suggest that bio-inspired sweat cooling, specifically using tough DN-Gel coatings, represents a
promising energy-efficient technology for cooling buildings as well as other devices and systems.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In most countries, residential and commercial buildings are one
of the highest energy consumption sectors. In the United States in
particular, over 40% of energy consumption and greenhouse gas
emissions are related to building temperature regulation [1]. Nota-
bly, building energy consumption is still increasing at a rate of 0.5–
5% annually in developed countries [2] and is expected to increase
even more rapidly in developing countries. Therefore, alternative
building thermal regulation technologies, based on passive sys-
tems, have been extensively studied over past decade [3–5], such
as night-time ventilation in moderate or cold climate [6,7], high
infrared (IR) reflective coatings for reducing energy uptake [8,9],
and phase change materials (PCMs) for thermal energy storage
[10–12]. Nevertheless, no current passive cooling technologies
used in buildings possess ideal characteristics such as high cooling
efficiency under a variety of weather conditions, high durability
including resistance to thermal cycling and UV irradiation, and
low cost. For example, PCMs are less effective under high solar
intensity fluctuations due to their low latent heat (�hundreds of
kJ kg�1). More efficient and durable cooling materials and systems
are needed for sustainable building cooling.

In nature, plants and animals are autonomously adaptive to
increases in environmental temperature through transpiration
and perspiration of water, which has one of the highest latent heats
among fluids. Inspired by such passive biological cooling processes,
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several self-adaptive technologies involving bio-inspired artificial
skins have been reported [13–17]. One of the more promising
materials is based on superabsorbent polymers, or hydrogels,
which can contain more than �90 wt% water in their fully swollen
state [18,19]. These swollen hydrogels can be applied to the roofs
of buildings [20], acting as artificial ‘skins’ to provide cooling. By
applying hydrogel coatings, heat dissipation is enhanced through
the evaporation of water inside the hydrogel, enabling surface tem-
perature reductions of 10–30 �C in various objects, such as skin
[21,22], handheld electronics [23–25], Li-ion battery packages
[26,27], and buildings. This remarkable autonomous cooling capa-
bility makes hydrogels an attractive candidate for energy-efficient
building cooling.

Importantly, hydrogels previously investigated for cooling
applications have not yet demonstrated one key feature required
to truly mimic biological skins: durability and reusability for
repeatable cooling. Only limited regeneration capability tests have
been performed on hydrogels for cooling applications [20,26,27].
The maximum cycling number demonstrated so far is about six,
which is far below the amount needed for practical cooling appli-
cations. Hydrogels utilized for bio-inspired cooling so far are often
brittle, as measured by low fracture energies (�10 J m�2) [28],
which is orders of magnitude lower than that of human skin
(�1800 J m�2) [29]. These poor mechanical properties (low
stretchability and toughness) severely limit the scope of cooling
applications for hydrogels, where reusable and regenerable cooling
is important for both long-term performance and cost-
effectiveness. For example, embedding hydrogels inside roofing
[20] makes it unfeasible to replace the gels after only a few cycles.
Furthermore, degradation and aging of hydrogels via UV radiation
hinders outdoor applications [30–32], such as for coating windows
or building facades.

In this work, we report, for the first time, the application of a
highly stretchable and tough double network hydrogel (DN-Gel)
[33,34] as a regenerable ‘sweating skin’ for cooling buildings. Com-
pared with single network hydrogels (SN-Gels) used in previous
cooling studies [20–27], DN-Gels have significantly higher fracture
energy (�9000 J m�2) [35], comparable to that of animal skin
[29,36]. While the toughness of DN-Gels is well established, their
suitability for cyclic cooling or heating has not been studied. Dur-
ing the cooling process, the internal morphology (e.g., porosity)
could change upon swelling/deswelling cycles, or the material
may degrade after exposure to heat and UV radiation. Herein, we
show that DN-Gels exhibit excellent evaporative cooling perfor-
mance as well as extraordinary toughness and cyclability, as
demonstrated by continual cooling performance over more than
50 cycles.

2. Materials and methods

2.1. Reagents and materials

The DN-Gel monomers, alginate (AG) and acrylamide (AAm)
(99+% electrophoresis grade) were purchased from FMC BioPolymer
and Alfa Aesar, respectively. A crosslinker, N,N0-methylenebis
(acrylamide) (MBAA) (>98.0%) and calcium sulfate dehydrate
(>99%), crosslinking accelerator, N,N,N0,N0-tetramethylethylenedia
Table 1
Reagents for DN-Gel and SN-Gel synthesis.

Reagent DN-Gel

Monomer Alginate (AG)/acrylamide (AAm)
Crosslinker N,N0-methylenebis (acrylamide) (MBAA)/ca
Crosslinkingaccelerator N,N,N0 ,N0-tetramethylethylenediamine (TE
Photoinitiator Ammonium persulfate (AP)
mine (TEMED) (99%), and photoinitiator, ammonium persulfate
(AP) (>98.0%), were purchased from Sigma–Aldrich. The SN-Gel
monomers, acrylic acid (AAc) (99.5%), and photoinitiator, 2,2-dime
thoxy-2-phenylacetophenone (DMPA) (99%), were purchased from
Alfa Aesar and Acros, respectively. All chemicals were used as
received without any purification (see Table 1).

2.2. Hydrogel preparation

To prepare DN-Gels, AG and AAm were dissolved in DI water
with weight ratios of 2%, 12%, and 86% [35]. We then added
0.06 wt% MBAA, as a cross-linker to AAm, and 0.17 wt% AP, as a
photoinitiator for AAm, to the solution. After degassing the solu-
tion in a vacuum chamber, we added 0.25 wt% TEMED, as a
cross-linking accelerator to AAm, and 13 wt% calcium sulfate
slurry, as an ionic cross-linker to AG, for homogeneous mixing
using a syringe technique. The solution was poured into a plastic
petri dish, cured with UV light (k = 254 nm) for 1 h at 50 �C, and
then left in a humid box for 24 h to stabilize the reaction.

For SN-Gels, a photoinitiator solution was prepared from
0.1923 g of DMPA in 10.0 mL of DMSO [37]. The solution was son-
icated until all the DMPA was dissolved, then covered and kept in
the dark. A pre-polymer solution contained the monomers and
cross-linking agent in a pH buffer solution with a molar ratio 7:3
of AAc to AAm and a 0.128 mol% crosslink density to the total
monomer. The photoinitiator solution and the pre-polymer solu-
tion were homogeneously mixed via sonication for 1 h. The solu-
tion was then poured into a petri dish and polymerization was
initiated by exposure to a UV lamp (k = 365 nm) at room tempera-
ture for 10 min.

2.3. Cooling performance experiments

To investigate the cooling performance and cyclability of tough
DN-Gels, we conducted cooling experiments on miniaturized
model houses under simulated solar irradiation (QL 1500 Series
lamp) with a maximum power density of 1000 Wm�2. Two identi-
cal model houses made of oak wood (with thermal conductivity of
0.17 Wm�1 K�1, density of 740 kg m�3, and thickness of 0.025 m),
each with a roof surface area of 64 cm2 (Fig. 1a), were built to com-
pare the cooling effectiveness of the DN-Gels and SN-Gels. Thermo-
couples were attached to the top and bottom surfaces of the roof
panel on both model houses to monitor the temperature rise
induced by simulated solar irradiation. To directly compare cooling
performance, both types of hydrogel layers were soaked in deion-
ized (DI) water for �8 h prior to attaching them to the model house
roofs. An acrylic adhesive was used to ensure good thermal contact
between the hydrogel layer and roof. A solar simulator was used to
apply a normal incident irradiance of �800 Wm�2 to both roofs.
Similar experiments were conducted to test the cyclability of the
DN-Gels and SN-Gels after reducing soaking and drying time to
�5 h, and varying incident irradiance power (700Wm�2 and
800Wm�2). The thickness of the tough DN-Gel mats synthesized
here is initially 1 cm but can reversibly expand up to 2 cm in the
swollen state after storing up to 90 wt% water [34,35]. We also syn-
thesized a 0.8 cm thick SN-Gel (Poly (AAm-AAc)) according to a
reported recipe [37].
SN-Gel

Acrylic acid (AAc)/acrylamide (AAm)
lcium sulfate N,N0-methylenebis (acrylamide) (MBAA)
MED) –

2,2-Dimethoxy-2-phenylacetophenone (DMPA)



Fig. 1. (a) Schematic of the experimental setup. Miniaturized house models were covered with a hydrogel layer and subjected to simulated solar irradiation to test the
effectiveness and regenerability of cooling. (b) Chemical fomula of the alginate-polyacrylamide hybrid based DN-Gel. Two types of polymer networks, ionic Ca2+ crosslinks
(red ellipse) in the alginate gel and covalent N,N-methylenebisacrylamide (MBAA) crosslinks (green squares) in the polyacrylamide gel, intertwined and joined by covalent
crosslinks (blue circles) between amine groups on the polyacrylamide chains and carboxyl groups on the alginate chains [35]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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2.4. Mechanical property test

Dog-bone shaped specimens were laser cut according to the
ASTM D-412 standard for the freshly prepared and cycled DN-
Gels (after 50 cycles) in both the dehydrated and swollen states.
The tensile test was conducted using an Instron 5965 universal
testing instrument with a strain rate of 0.02 s�1. Nominal stress
was defined as the ratio between the applied force and the initial
cross-sectional area of the specimen, and stretch was defined as
the ratio of the current and initial length of the specimen.

2.5. Swelling ratio test

Cubes of dry gels with sides measuring 0.5 cm were immersed
in DI water at a relative humidity of �50% at room temperature.
The gels were continuously retrieved from the water and, after
removing excess water from the cube surface, weighed, until the
gels reached fully saturated states, indicated by no additional
weight gain over 3 more weighing cycles. The Swelling Ratio (SR)
was defined as the ratio of the gained weight of water inside the
hydrogel to that of the initial dehydrated gel [38,39].
3. Effective and regenerable cooling performance of DN-Gels

The house models covered with hydrogel layers, as shown in
Fig. 1a, were built and subjected to simulated solar irradiation
ranging from 700 to 800Wm�2. Following Sun et al. [35] DN-
Gels were synthesized, with the chemical formula of the Gel shown
in Fig. 1b, which have two types of polymer networks, ionic Ca2+

crosslinks (red ellipse) in the alginate gel and covalent N,N-
methylenebisacrylamide (MBAA) crosslinks (green squares) in
the polyacrylamide gel, intertwined and joined by covalent cross-
links (blue circles) between amine groups on the polyacrylamide
chains and carboxyl groups on the alginate chains [33]. For com-
parison, SN-Gels [37], abbreviated as poly (AAm-AAc) hereafter,
were also synthesized.

3.1. Cooling effectiveness of DN-Gels

Fig. 2 shows the results of the cooling experiments on the house
models coated with the DN-Gel, SN-Gel, and without any gel,
which were subjected to simulated solar irradiation of
800 Wm�2. As shown in Fig. 2a, both types of hydrogels exhibited
similar cooling capability during the first three hours of solar irra-
diation. In comparison to the model without an applied hydrogel
coating, water evaporation from the hydrogel coated models low-
ered the top temperature of the roof by as much as 30 �C. However,
the roof temperature of the SN-Gel coated model increased gradu-
ally after the first three hours and reached the final equilibrium
temperature after four hours, which is about 30 �C and 8 �C higher
than the temperature of the top and bottom surfaces of the DN-Gel
coated roof, respectively. Additionally, the DN-Gel enabled a signif-
icantly longer cooling duration and continuously maintained the
bottom surface of the model roof at 49 �C for up to seven hours,
as shown in Fig. 2a. The longer cooling duration of the DN-Gel is
also evident from the net heat flux entering the house models.
The net heat input, as shown in Fig. 2b, was calculated from Four-
ier’s law, q ¼ �k dT

dx, where the thermal conductivity
(k = 0.17 Wm�1 K�1) and thickness (0.025 m) of the roof is known
and the temperature difference between the top and bottom roof
surfaces was measured. Before solar irradiation, both DN-Gel and
SN-Gel model houses were at room temperature. During the initial
�30 min upon solar irradiation, the temperature at the top and
bottom surfaces of the house model were both increasing due to
the transient heat transfer behavior (Fig. 2(a)). As a result, the
net heat flux entering the house models, which was calculated
based on the temperature difference between the top and bottom
surfaces, also increased with time. This temperature rise resulted
in higher water evaporation rate from the hydrogels, leading to
decreasing net input heat flux in both the DN-Gel and SN-Gel cases
from �30 min to �3 h. After �3 h, the DN-Gel house reached the
steady state, whereas the house covered with the SN-Gel, which
contained a smaller amount of water, experienced increasing tem-
perature and heat flux because the stored water was exhausted.
With the DN-Gel layer, a much lower net heat input
(�50Wm�2) with constant cooling is observed compared to that
of the SN-Gel layer (�250 Wm�2) after four hours, which shows
that the DN-Gel effectively rejects about 93% of the incident solar
irradiance. As we shall see later, the longer cooling duration of
the DN-Gel layers is a result of the larger amount of absorbed
water during the soaking period (�8 h) and a slightly larger thick-
ness while in the dehydrated state (1.0 cm vs. 0.8 cm), compared to
that of the SN-Gel.



Fig. 2. (a) Comparison of the cooling effectiveness of the DN-Gel and SN-Gel. (b)
Net input heat flux entering the model houses coated with DN-Gel and SN-Gel
layers. The DN-Gel provides a longer cooling duration with a lower net heat flux
entering the structure, compared to that of the SN-Gel.

Fig. 3. Cooling cyclability test of the DN-Gel and SN-Gel. Roof temperatures for: (a) DN-G
and (c) SN-Gel coating for 3 cycles (cloudy days). (d) DN-Gel surface (intact after the 50

S. Cui et al. / Applied Energy 168 (2016) 332–339 335
3.2. Cooling cyclability of DN-Gels

Two model houses, each covered with a DN-Gel and SN-Gel,
respectively, were subjected to repeated cycles of drying for cool-
ing (subjected to simulated solar irradiation) and replenishing by
hydration charging (soaking in water). The model house with the
DN-Gel was subjected to a total of 50 cycles, with 24 cycles of
700 Wm�2 (cloudy days) and 26 cycles of 800 Wm�2 (sunny days)
solar irradiation, at a relative humidity of �50% (ambient temper-
ature). The DN-Gel effectively lowered the bottom surface temper-
ature of the house roof to 43 �C (Fig. 3a) and 49 �C (Fig. 3b) for the
700Wm�2 and 800Wm�2 solar irradiation cases, respectively.
The slight variation in roof temperatures was likely caused by
ambient temperature/humidity changes. The cycling experiment
clearly shows that the cooling power and water storage capacity
of the DN-Gel layer does not degrade after 50 cycles, demonstrat-
ing the regenerability of the cooling performance offered by the
DN-Gel. As shown in Fig. 3d, after 50 cycles, the DN-Gel network
still maintains integrity upon repeated volume expansion and UV
irradiation, further demonstrating its durability. This degree of
cyclability has not been observed in any of the previously studied
artificial hydrogel skins based on SN-Gels. Furthermore, the SN-Gel
layer only exhibited sustained cooling capability during the first
two cycles, maintaining the bottom temperature of the roof at
43 �C (Fig. 3c) for the 700Wm�2 solar irradiation case. During
the third cycle, the SN-Gel layer failed to cool the roof, and the bot-
tom temperature increased to 50 �C due to collapse of the SN-Gel
network (Fig. 3d).

4. Sustainable mechanical performance of DN-Gels after cycling

In order to better understand the enhanced cooling cyclability
and its correlation with the mechanical properties of the DN-Gel,
tensile tests on fresh and cycled DN-Gels (after the aforementioned
el coating for 24 cycles (cloudy days), (b) DN-Gel coating for 26 cycles (sunny days),
th cycle) and SN-Gel surface (cracked after the 3rd cycle).



Fig. 4. (a) Sustainable mechanical properties of the DN-Gels after 50 cycles
compared to fresh DN-Gels in both swollen and dehydrated states, as measured by
the nominal stress vs. stretch curves. Crosses indicate mechanical breakage of the
specimens. Insets are the swollen DN-Gel after 50 cycles before and during the
tensile test. (b) Comparable swelling ratio (SR) of the cycled and fresh DN-Gels.
Insets shows the lower SR of the specific SN-Gel studied in this work, which
explains its shorter cooling duration observed in Fig. 2.
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50 swelling–deswelling cycles) were performed. Fig. 4a shows that
the cycled DN-Gels possess comparable stress-stretch curves to
those of fresh gels, in both the swollen and dehydrated states, indi-
cating little mechanical degradation due to cycling. The figure also
shows that the DN-Gels in the dehydrated state are less stretchable
than those in the fully swollen state for both fresh and cycled gels,
as one would expect. The sustainable high stretchability of the
swollen DN-Gel after cycling is also demonstrated by the insets
in Fig. 4a for the cycled gel before and during the tensile test.

Besides the sustainable mechanical properties of the DN-Gel,
the hydration (swelling) characteristics of the cycled DN-Gel layers
are also comparable to the fresh ones. The cooling duration is dic-
tated by the amount of water stored in the gel, which is character-
ized by the swelling ratio (SR). Fig. 4b shows the SRs of the DN-Gels
as a function of soaking time, demonstrating similar swelling
behavior between the cycled and fresh samples. In both types of
samples, the swelling process is initially fast and gradually slows
down before reaching a maximum SR of approximately 40 after
50 h. Figs. 3a, b and 4b show that the performance of the DN-Gel
is not degraded during both the drying and replenishing processes,
illustrating the regenerability of the hydrogels, which is important
for building cooling applications.

The inset in Fig. 4b also shows that the maximum SR is only �4
for the SN-Gel. This observation is consistent with a previous study
on the SR of the same SN-Gel, namely Poly (AAm-AAc).[40] Com-
pared to DN-Gels, the charging capacity of the SN-Gel is 4 to 5
times lower within the 8-h soaking time for the cooling effective-
ness test. This explains the shorter cooling performance of the SN-
Gel exhibited in Fig. 2. It should be noted that this SR behavior is
specific to the SN-Gel used in this study, i.e. Poly (AAm-AAc) with
an AAc : AAm ratio of 7:3, in DI water at a relative humidity of
�50% and room temperature. Other compositions of AAc and
AAm of Poly (AAm-AAc) in a different PH-buffer [37,40] or other
types of SN-Gels have shown larger SRs [41,42].

The fractured fresh and cycled (after 50 cycles) DN-Gels were
dried via critical point drying (CPD) and the sample surfaces were
examined with a scanning electron microscope (SEM). The sur-
faces, which fractured due to stress from the swollen state, reveal
a porous structure (Fig. 5a and b) compared with those of the dehy-
drated DN-Gels (Fig. 5c and d). The fractured surface in the swollen
state of the cycled DN-Gel (Fig. 5b) is more porous than that of the
fresh one (Fig. 5a), leading to its slightly higher SR (Fig. 4b). The
porous structure in the swollen state also leads to a rougher sur-
face of the cycled specimen in the dehydrated state (Fig. 5d) after
undergoing many cooling cycles. This observation is consistent
with our initial hypothesis that the DN-Gels still maintain their
mechanical integrity as well as the drying and replenishing perfor-
mance, even after undergoing minor structural changes associated
with the cycling.

5. High transparency of DN-Gel

DN-Gel coatings are advantageous over other coating materials
due to their high transparency when applied on building windows.
To demonstrate the effectiveness for window cooling applications,
DN-Gels were placed on a transparent glass sheet under simulated
solar irradiation of 800 Wm�2. As shown in Fig. 6a, the tempera-
ture of the glass sheet covered with the DN-Gel layer is about
10 �C lower than that of the control glass sample without a hydro-
gel layer over a period of 3 h. The transparency of the DN-Gels is
shown in the photographs taken before and after the cooling
experiments, Fig. 6b and c, respectively. Before the cooling test,
the fresh DN-Gel contains over 95 wt% water. Images underneath
the hydrogel layer and glass sheet are clearly visible (Fig. 6b).
As the temperature increases, the DN-Gel undergoes a phase tran-
sition from a hydrated swollen state to a hydrophobic state, result-
ing in water release. The transparency of the DN-Gels decreases
with reduced water content during cooling, as revealed by the
blurry images under the DN-Gel and glass sheet in Fig. 6c. In order
to adapt to different climates, the transparency of the DN-Gel can
be set according to specific requirements by controlling the water
content as well as evaporative cooling duration.

6. Energy and economic analysis

6.1. Energy saving performance

The heat balance on the roof surface is: aI ¼ L0 þ
hrðTroof � TairÞ þ hcðTroof � TairÞ [43], where a is the solar absorp-
tance (�50% for a silver-colored roof), I is the solar insolation
(maximum �1 kWm�2), L0 is the thermal radiative cooling rate
varying from 50 to 100Wm�2 as demonstrated in Ref. [44], hr is
the radiative heat transfer coefficient (hr ¼ 4erT3

air, e ¼ 0:9 and
r = 5.67 Wm�2 K�4), and hc is the convective heat transfer coeffi-
cient (�6.6 Wm�2 K�1, estimated in Ref. [45] for Troof � Tair = 30 K).
Therefore, the temperature difference is Troof � Tair = (aI � Lo)/
(hr + hc). Electrical energy savings and associated carbon dioxide
(CO2) emission reductions are estimated for a mid-sized house
with and without the DN-Gel coating on the roof located in South-
ern California, shown in Table 2. In order to sustain an interior tem-
perature of 20 �C, an air conditioner will consume �600 kW h of
electrical power per year for a house with a silver-colored roof.
With a DN-Gel coating on the roof, the electricity cost and CO2

emissions are reduced by 47% for the same house. The hydration
charging of DN-Gels can be accomplished by several ways, such



Fig. 5. Surface characteristics of the DN-Gel in the (a) fresh and (b) cycled swollen state, and (c) fresh and (d) cycled dehydrated state. DN-Gels after 50 cycles show more
porous and rougher surfaces in swollen and dehydrated states, respectively. Scale bars = 1 lm.

Fig. 6. (a) Cooling effectiveness of the DN-Gel on transparent glass. Transparency before (b) and after (c) cooling performance tests.
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as utilizing recycled water and collecting raining water. Based on
the reduction in heat uptake (31 MJ per day) and the latent heat
of water, the amount of water for hydration charging is estimated
to be less than 1.4 m3 per year for a roof area of 100 m2.



Table 2
Energy savings and CO2 emission reduction with DN-Gel coating roof.

Toutside (�C)a Tinside (�C) Heat uptake/day (MJ)b Electricity cost/year ($)c CO2 emission/year (kg)d

Bare roof (no gel) 67 20 �65 �90 �340
DN-Gel coating roof 45e 20 �34 �47 �180

a Calculated by assuming Tair = 35 �C in hot summer.
b Calculated as ðToutside � T insideÞUAhouset with t ¼ 6 h and an overall heat transfer coefficient of roof U = 0.637 Wm�2 K�1 [47]. Ahouse = 100 m2 is the irradiated surface area.
c Assuming 100 hot days per year, electricity cost = $0.15/kW h, COP of an air conditioner = 3.
d 0.563 kg CO2 emission per kW h [48].
e hr is 4–5 times higher when hydrogel coating is applied [24].

338 S. Cui et al. / Applied Energy 168 (2016) 332–339
We can further compare DN-Gel cooling technology to another
emerging cooling technology, PCMs. PCMs are also a promising
material for building thermal regulation but their main disadvan-
tages are high material cost and low latent heat. For instance,
paraffin, one of the most common PCMs, has a cost of $1692–
1800/m3 and a latent heat of 147 kJ kg�1 [46]. Hydrogel could be
more advantageous due to its low cost ($370/m3) and the associ-
ated high latent heat of water.
6.2. Manufacturing scalability and application feasibility

Tough hydrogels can be manufactured at scale with low cost.
The reagents, such as acrylic acid (AAc) and its sodium or potas-
sium salts, and acrylamide (AAm), are already being used in large
volume in hydrogel manufacturing [49], e.g., baby diapers. Major
equipment [50,51] involved in production, e.g. alginator and mixer,
heater, and UV light for curing, are standard industrial equipment
being employed in industrial polymer production [52]. Supple-
mentary Table S1 summarizes the estimated cost of the raw mate-
rials for manufacturing tough hydrogels. The total cost is
approximately $3.7 for a hydrogel sheet of 1 m2 area and 1 cm
thickness. Also, the high toughness enables the application of the
DN-Gels directly on the surface for cooling with acrylic adhesive.
Additionally, DN-Gels can be encapsulated in the outermost layer
of roofs, windows or walls with porous covers. After evaporative
cooling, the hydration charging for DN-Gels can be achieved, for
instance, via automatical irrigation systems.
7. Conclusion

In summary, we have demonstrated the high cooling perfor-
mance and remarkably regenerable cooling capability of tough
DN-Gels for building cooling applications. The DN-Gels exhibit out-
standing cooling performance by reducing the surface temperature
of wood roofs and glass windows by 25–30 �C and 10–15 �C,
respectively. Compared to SN-Gels, the cooling power and water
absorption capacity of the DN-Gels are preserved for more than
50 cooling cycles. Compared to white roofs [53,54], hydrogels have
the additional feature of high transparency [55], rendering them
attractive for building window applications. Therefore, we envision
that the remarkable mechanical and thermal properties of these
tough DN-Gels, especially the significantly improved cyclability,
will offer a novel bio-inspired energy-efficient cooling approach
for buildings. Our materials could also be applied for energy-
efficient thermal management of other devices and systems, such
as electronics, occupational clothing, and batteries.
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