
This journal is©The Royal Society of Chemistry 2017 Soft Matter

Cite this:DOI: 10.1039/c7sm01479a

Cavitation to fracture transition in a soft solid

Jingtian Kang,ab Changguo Wang*b and Shengqiang Cai *a

When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside

the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value:

2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is

usually referred to as cavitation instability in soft solids. Several recent experiments have shown that

fractures may occur in the material when the hydrostatic tension is far below the critical value. In this

article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer

subject to hydrostatic tension. We compute the energy release rate associated with the extension of the

ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the

pressure-control mode, the energy release rate increases with the increase of the crack size as well as

the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy

release rate increases with the increase of the crack size when the crack is short; the energy release rate

maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack

is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture

transition in soft solids subject to different loading conditions.

1. Introduction

When a soft solid is subject to hydrostatic tension, a small
cavity initially inside the material expands. Based on the model
of assuming a small spherical cavity inside an infinitely large
neo-Hookean solid, we can predict that when the hydrostatic
tension is small, the cavity expands slowly with increase of
hydrostatic tension. When the hydrostatic tension approaches
2.5 times its shear modulus, the cavity expands dramatically
with a tiny increase of external stress. Such a phenomenon is
usually referred as cavitation instability in elastomeric solids.
Pioneering experiments and theoretical analysis done by Gent1

have quantitatively validated the above prediction for vulcanized
rubber. Similar experiments have been recently conducted by
Hamdi et al.2 on styrene butadiene rubber. Making use of
cavitation instability in soft solids, Zimberlin et al.3,4 developed
the cavitation rheology technique to measure the local shear
modulus of hydrogels and soft tissues such as brain tissue and
bone marrow.5

It has been shown in recent experiments which were
elegantly done by Poulain et al.6 that fracturing may occur in the
elastomer far before the hydrostatic tension reaching 2.5 times
its shear modulus. It has also been shown that because of the

large deformation, cavity expansion cannot be easily distinguished
from crack extension.

To study fracture during the cavitating process, William and
Schapery7 regarded the expansion of a cavity in an elastomer as
the process of creating new spherical surface and computed the
energy release rate of this process. They obtained the energy
release rate of the cavitating process in an elastomer as:
G = mR(2l2 + l�4 � 3), where R is the initial cavity radius, and
l is the ratio between the radius of the cavity after and before
deformation. When the energy release rate is equal to the fracture
toughness of the material, cavitation-induced-fracture occurs. In
addition to the spherical shape, defects in a solid may have
different shapes. Gent and Wang (GW),8 and later Lin and Hui
(LH),9 have calculated the energy release rate in an elastomer with
a penny-shape defect, when the elastomer is subject to hydrostatic
tension. Using the elastic cavitation results obtained earlier, GW
gave the energy release rate as: G = 2mR(1 + l2 � 2l�1). It was later
pointed out by Lin and Hui that GW overestimated the energy
release rate.9 LH provided an approximate analytical equation
to estimate the energy release rate for an incompressible

neo-Hookean material as G � 4mR
3p

2l2 þ 1

l4
� 3

� �
. The above

equation has shown to be a good approximation to the energy
release rate computed by finite element simulations, when the
hydrostatic tension is less than 90% of the shear modulus of the
elastomer. In addition to the work discussed above, Hutchens et al.10

have recently constructed a mechanism map for the cavitation
rheology test considering both elastic deformation and fracture.
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In this article, to study cavitation-to-fracture transition in a
soft solid, we reconsider the problem by assuming a spherical
cavity inside a soft solid with an edge crack of ring-shape on the
cavity wall as shown in Fig. 1. The introduction of an edge crack
enables us to study the energy release rate with a clearly defined
fracturing surface. When the edge crack is small, it can be
regarded as a tiny defect on the cavity wall or small deviations of
the cavity from the perfect spherical shape. It has been shown
that when rubber blocks are supersaturated with high-pressure
dissolved gases or liquids, cavities of spherical shape can often
be found in the interior.11 When the size of the edge crack is
much bigger than the cavity radius, the introduced defect is
similar to a penny-shaped crack in the material. We use finite
element simulation to compute the energy release rate of the
edge crack for different levels of hydrostatic tension or different
volumes of the cavity. We can predict the critical pressure or
volume of the cavity for the edge crack to grow if the fracture
toughness of the material is known. Our calculations also show
that depending on the loading condition, the crack may grow
either in a stable or unstable manner.

2. Numerical models

Fig. 1 shows the schematics of our model of studying the
cavitation-to-fracture transition in an elastomer subject to
external hydrostatic tension. Following most previous work on
cavitation in soft solids,8,9 we assume a small spherical cavity
exists inside the material before the mechanical load is applied.
In addition, a pre-existing ring crack is introduced on the cavity
wall as shown in Fig. 1a. When the external hydrostatic tension
is small, the cavity expands and the wall of the cavity stretches
without crack extension as shown in Fig. 1b. When the hydro-
static tension is high enough, the crack extends with cavity
expansion (Fig. 1c). It is noted that in the current study, we
ignore the interaction among cavities. In another word, we
assume the cavities are sparsely distributed in the material,
which is also a commonly-adopted assumption in most previous
studies.3–10

To calculate the deformation of the elastomer with a cavity
and the energy release rate for the crack extension, we use com-
mercially available finite element codes, ABAQUS standard,12

to conduct implicit quasi-static simulations. In the finite element
model as shown in Fig. 2, taking advantage of the geometrical
symmetry, we only simulate a quarter of a spherical elastomer. In
the undeformed state, the radius of the spherical cavity is R and
the size of the ring crack is denoted by a. The ratio between the
outer radius of the elastomer Ro and the radius of the cavity R is
set to be 200. In the deformed state, external pressure is applied
onto the surface of the elastomer, which induces the expansion
of the cavity. Mesh configuration of the finite element model is
shown in Fig. 2b. The mesh is greatly refined near the cavity. The
type of element for the simulation is CAX8H. The total number
of elements in the finite element model is 156 528. The incom-
pressible neo-Hookean hyperelasticity model is assigned to the
material. The energy release rate is calculated by exporting the
J-integral around the crack tip using the contour integral function
embedded in ABAQUS. The convergence of the results is guaranteed
by checking the independence of the J-integral on different contours
around the crack tip.

Based on the finite element simulations, we present the results
of the energy release rate for two different loading modes: first,
the energy release rate is plotted as a function of crack size with
different magnitudes of the external tension; second, the energy
release rate is plotted as a function of crack size for different
volumes of the cavity.

3. Results and discussions

A spherical cavity inside an infinitely large incompressible
neo-Hookean solid expands when the solid is subject to
external hydrostatic tension. The relationship between the size
of the cavity and the magnitude of the hydrostatic tension is
given by,1

P = m(5 � 4l�1 � l�4)/2, (1)

where l is the ratio between the radius of the cavity after and
before deformation, and m denotes the small-deformation shear
modulus of the neo-Hookean solid. It can be easily seen from
eqn (1) that when the applied pressure approaches 2.5m, the
size of the cavity grows unboundedly. Consequently, the stretch

Fig. 1 Schematics of the model for studying cavitation-to-fracture transi-
tion in an elastomer subject to externally applied hydrostatic tension. (a) In
the undeformed state, a spherical cavity with a ring crack is in the elastomer.
(b) When externally applied hydrostatic tension is small, the cavity expands
without crack propagation. (c) When the hydrostatic tension is large enough,
the crack grows with cavity expansion.

Fig. 2 Schematics of finite element model for calculating energy release
rate associated with the growth of the ring crack in the cavitating process.
(a) In the undeformed state, a small spherical cavity with radius R is introduced
into a spherical elastomer with radius R0 = 200R. A ring crack with length a is
introduced onto the cavity wall. When hydrostatic tension is applied onto the
external surface of the elastomer, the cavity expands. Mesh configuration of
the finite element model is shown in (b). In the vicinity of the cavity wall and
ring crack tip, meshes are greatly refined.
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on the cavity wall can be large enough to induce fracture in the
material. It can also be seen from eqn (1) that the critical pressure
is independent of the initial cavity size. However, it has been
shown in some experiments that a smaller cavity needs larger
pressure to grow to visible bubbles,7 which indicates the involve-
ment of the fracture during the cavitating process. It is known
that the fracture provides an intrinsic length scale: G/m, where
G is the fracture toughness of the material.

In this article, we consider a cavity with a small ring crack
embedded inside an elastomer as shown in Fig. 1. For the
pressure-control mode, external hydrostatic tension is applied
onto the outer boundary of the elastomer. The energy release
rate calculated as a function of pressure is shown in Fig. 3 for
different initial ring crack sizes. It is noted that the externally
applied hydrostatic tension is equivalent to the application
of inflated pressure inside the cavity with the same magni-
tude, due to the incompressibility of the material. It can be
clearly seen from Fig. 3 that with the increase of pressure and
the size of the ring crack, the energy release rate increases.
When the pressure approaches 2.5 times the shear modulus,
the energy release rate increases unboundedly. For com-
parison, we also plot the results from WS7 and from LH9 in
Fig. 3. When the ring crack is much larger than the cavity, we
can recover the results of the energy release rate of a penny-
shape defect in an elastomer subject to hydrostatic tension as
given by LH.

When a/(R + a) in Fig. 1a is much smaller than one, the ring
crack can be viewed as an edge crack with length a in a rectangular
elastomer strip, as shown in Fig. 4a. Based on simple scaling
analysis, the energy release rate can be given by,

G = 2k(l)w(l)a, (2)

where w(l) is the strain energy density of the rectangular
elastomer without a crack, yet with the same stretched state,
k(l) is a dimensionless function only depending on the stretch
state, and a is the size of the edge crack.

For a rectangular elastomer strip subject to simple extension
with stretch l, several different forms of k(l) have been given by
different researchers under plane stress conditions. For example, for
a central crack in a rectangular thin rubber sheet subject to simple

extension, Lake13 gave an expression for k(l) as kðlÞ ¼ p
. ffiffiffi

l
p

.

Another fitting form of k(l) which has been more widely used is
given by Lindley14 as,

k ¼ 2:95� 0:08e

1þ eð Þ1=2
; (3)

where the engineering strain e = l � 1. It has been pointed out
by Yeoh,15 when the strain is small, the above equation deviates
from the prediction from linear fracture mechanics.

Fig. 3 Dependence of normalized energy release rate on the magnitude
of hydrostatic tension for different sizes of the ring crack. When the ring
crack is much larger than the cavity radius, we can recover the energy
release rate for a penny-shape defect in an elastomer subject to hydro-
static tension. When the ring crack is much smaller than the cavity radius,
the ring crack can be viewed as a crack in a rectangular strip.

Fig. 4 Finite element computation of the energy release rate of a rectangular
neo-Hookean strip with an edge crack and subject to axial stretch. The
strip is subject to simple extension or axial stretch under plan strain
extension. (a) Schematics of the finite element model. In the undeformed
state, the width of the strip is w, its height h = 4w, and the length of the edge
crack is set to be a = 1%w and 5%w. The element type in the simulation is
CPS8R or CPE8H for the plane stress condition and plane strain condition,
respectively. (b) The dependence of the dimensionless function k(l) on the
axial stretch. k(l) is defined in eqn (2).
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To obtain a more accurate formula for the energy release
rate, we conduct finite element simulations on a rectangular
hyperelastic strip as shown in Fig. 4a. In the undeformed state,
the width of the strip is w, and its height is h = 4w. Due to the
symmetry, only half of the strip is modeled. The length of the
edge crack is taken to be a = 1%w and 5%w, respectively. In
the deformed state, axial displacement is imposed on its edge
as shown in Fig. 4a. We calculate the deformation of the
rectangular strip under plane stress and plane strain conditions
using CPS8R and CPE8H elements, respectively. The mesh is
greatly refined near the crack tip as shown in Fig. 4a. The total
number of the elements is 86 260. The material is set to be an
incompressible neo-Hookean solid. We calculate the energy
release rate by exporting the J-integral around the crack tip
using the embedded function of ABAQUS. Based on the numerical
results, we propose the following fitting equation for k(l) as
defined in eqn (2):

kðlÞ ¼ 1:513l� 0:076

l� 0:6325
: (4)

The fitting result given by eqn (4) is plotted with finite element
simulation results in Fig. 4b. When l - 1, k - 3.9102 as given
by eqn (4), which agrees well with the prediction from linear
fracture mechanics.16 The results in Fig. 4b show that the
above equation gives improved predictions for the l ranging
from 1 to 4.

According to our knowledge, for a rectangular elastomer
strip with an edge crack and subject to finite axial stretch under
plane strain conditions, k(l) is not available in the literature.
When the deformation is small, it can be easily shown that the
form of k(l) for axial stretch is the same for plane strain condition
and plane stress condition. Using finite element simulation, we
confirm that finite deformation, k(l) for axial stretch is still the
same for plane strain and plane stress conditions as shown in
Fig. 4b, by changing w(l) in eqn (2) from axial stretch with plane
stress condition to plane strain condition.

The stretch state near the wall of the cavity can be viewed as
a generalized plane strain condition. It has been shown that the
strain energy state of a deformed hyperelastic material under
generalized plane conditions can be directly obtained from the
energy obtained under plane strain conditions.17 The stretch
state of the cavity wall can be given by l1 = l2 = l and l3 = l�2.
As a result, the energy release rate can be given by:

G ¼ 2a

l
k l1

0
� �

w l1
0

� �
; (5)

where l1
0 ¼ l

ffiffiffi
l
p

, w(l1
0) = m(l1

02+l1
0�2 � 2)/2, and k(l1

0) can be
given by the fitting formula (eqn (4)). A combination of eqn (1)
and (5) enables us to obtain the relationship between the
energy release rate and the magnitude of the pressure when
the crack size is small as shown in Fig. 3. The prediction given
by eqn (5) also agrees well with our FEM simulations.

In the experiment of needle-induced cavitation done by
Zimberlin et al.,18 water is continuously injected into an elastomer
to induce cavitation. The space of the cavity is completely filled
with nearly incompressible water. Therefore, if the water injection

is very slow or quasi-static, the cavitating process in the elastomer
can be viewed as a volume-control process.

Motivated by the needle-induced cavitation experiment, we
plot the energy release rate as a function of the size of the ring
crack for different volumes of the cavity in Fig. 5. With a fixed
volume of the cavity, the energy release rate increases with the
increase of crack size when the crack is short. The energy release
rate maximizes when the crack is of an intermediate length. The
energy release rate decreases with further increase of the crack
size when the crack is large. The peak values of the energy
release rate for different volumes of the cavity are connected by a
dashed curve in Fig. 5. According to fracture mechanics, when
the energy release rate is equal to or larger than the fracture
toughness of the material, the crack begins to grow. Such growth
may be either stable or unstable. As we can see from Fig. 5, for a
fixed crack length, the energy release rate increases with the
increase of the volume of the cavity. Consequently, with a certain
initial crack size and fracture toughness of the material, the
crack begins to grow when the volume of the cavity increases to
a critical value. If the initial ring crack is small, namely on the
left of the dashed curve in Fig. 5, with a fixed volume of the
cavity, the energy release rate first increases and then decreases
with the increase of crack size. This indicates that the crack
may grow unstably first and then be arrested when the energy
release rate is equal to the fracture toughness of the material
again as shown in the horizontal dash line in Fig. 5. Such
unstable crack growth may induce a drop of pressure of the
water. If the initial ring crack is large, namely on the right of the

Fig. 5 The dependence of normalized energy release rate on the size of
ring crack for different volumes of the cavity. V0 is the initial cavity volume
in the undeformed elastomer, V is the cavity volume after deformation.
The black dashed curve connects the peak values for different volumes of
the cavity. If the initial ring crack size is small (left side of the curve) and
fracture toughness of the material is G (point A in the plot), when the
volume of the cavity is large enough (V/V0 = 8), the ring crack will grow
unstably from point A to point B with a much larger crack size. The crack is
then arrested, and further growth of crack requires increase of the volume
of the cavity.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
1 

A
ug

us
t 2

01
7.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

04
/0

9/
20

17
 1

8:
50

:2
5.

 
View Article Online

http://dx.doi.org/10.1039/C7SM01479A


This journal is©The Royal Society of Chemistry 2017 Soft Matter

dashed curve in Fig. 5, with a fixed volume of cavity, the energy
release rate always decreases with increase of crack size. This
indicates that the crack should grow stably when the volume of
cavity is large enough, namely, any additional growth of the
crack requires increase of the volume of the cavity.

Finally, we would like to note that the results obtained in this
article are based on a simplified geometry, i.e. a ring crack on the
wall of a spherical cavity which is embedded in an infinitely large
elastomer. Due to the cavitating process in soft solids, cavities of
complex shapes and multiple cracks may exist. Additionally, the
loading conditions may be different from both the pressure-
control and volume-control model.

4. Concluding remarks

In this article, we study the fracture of an elastomer during the
cavitating process. Using the finite element method, we calculate
the energy release rate of an elastomer with a spherical cavity
and a ring crack on its wall, when subject to hydrostatic tension.
Depending on the loading mode and initial ring crack size, the
crack may grow stably or unstably during the loading process.
The results presented in the article are helpful for understanding
the cavitating process in an elastomer and utilizing cavitation
rheology to measure the fracture properties of soft solids.
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