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a b s t r a c t

We study instability of a Newtonian Couette flow past a gel-like film in the limit of vanishing Reynolds
number. Three models are explored including one hyperelastic (neo-Hookean) solid, and two viscoelastic
(Kelvin–Voigt and Zener) solids. Instead of using the conventional Lagrangian description in the solid
phase for solving the displacement field, we construct equivalent ‘‘differential’’ models in an Eulerian
reference frame, and solve for the velocity, pressure, and stress in both fluid and solid phases simul-
taneously. We find the interfacial instability is driven by the first-normal stress difference in the base-
state solution in both hyperelastic and viscoelastic models. For the neo-Hookean solid, when subjected
to a shear flow, the interface exhibits a short-wave (finite-wavelength) instability when the film is thin
(thick). In the Kelvin–Voigt and Zener solids where viscous effects are incorporated, instability growth
is enhanced at small wavenumber but suppressed at large wavenumber, leading to a dominant finite-
wavelength instability. In addition, adding surface tension effectively stabilizes the interface to sustain
fluid shear.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

The interaction of viscous fluid and soft objects is of consid-
erable importance in a wide range of problems, such as rheology
of complex fluids, coating, biological locomotion, and soft lubrica-
tion [1–4].When a soft material interacts with fluid flows, the cou-
pling between the fluid force and material elasticity can generate
waves propagating at the fluid/solid interface. Understanding this
behavior is critical to the study of biological swimmers and their
artificial analogs as it can greatly effect the viability and efficiency
of a potential swimming mode. Kumaran et al. [5] first studied the
stability of an incompressible viscoelastic gel film in a Newtonian
Couette flowby ignoring inertia,where a linearmodel is adopted to
describe deformation. They found the fluid/solid interface becomes
unstable when the imposed shear goes beyond a certain critical
number, and the critical value of the imposed fluid shear strength
varies inversely with the film thickness for sufficiently thick solids,
which is verified by the following experiments by Kumaran and
Muralikrishnan [6,7]. For sufficiently thin solids, however, the lin-
ear elastic model overpredicts the critical values of the fluid shear
that drives the interfacial instability. Gkanis and Kumar [8] studied
the similar problem by employing a neo-Hookean solid model
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which admits finite/large deformation. While observing similar
behaviors for thick gels, their model predicts a much smaller crit-
ical shear for thin gels, which suggests that incorporating solid
nonlinearity can effectively destabilize the system. It has been
identified that such interfacial instability under shear is mainly
due to the first normal-stress difference appearing at the base
state solutions, which is known as the Poynting effect in nonlinear
solids [9,10], and is also similar to the situation of two coupled
viscoelastic liquids [11,12]. When surface tension is incorporated
into the model, it changes the short-wave instability in thin films
to be finite-wavelength. Later Gkanis and Kumar [13] investigated
how the flow field and combined pressure gradient impact stability
of a neo-Hookean solid.

Although such elastohydrodynamic instability has been studied
for simple neo-Hookean solids, in practice soft materials often
exhibit more complicated constitutive behaviors than hyperelas-
ticity. Especially for gel-like (e.g., hydrogel) materials that are typ-
ically composed of a large amount of solvent such aswater and long
chain polymers which can form a complex network by chemical
crosslinkers such as covalent bond, or physical crosslinkers such
as ionic bond or van der Waals interaction. The combined effects
of elasticity, viscosity, and surface tension may generate new dy-
namic behaviors of the material [14], as well as some intriguing
interfacial instability phenomena [15–17].
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Fig. 1. Schematic for a Couette flow past a gel film. Nonlinear solid models: (a)
neo-Hookean, (b) Kelvin–Voigt, (c) Zener.

In this paper we study stability of an incompressible, imper-
meable gel film when subjected to a Newtonian Couette flow;
see schematic in Fig. 1. We employ an Eulerian representation
in both fluid and solid phases, and solve for the velocity, pres-
sure and stress fields simultaneously. Compared to the previous
works [5,8,13], we examine the contributions from both the vis-
cous effect and the nonlinear elasticity to the fluid/solid interface
instability, especially for the thin films where material nonlinear-
ity is manifested. The paper is organized as follows. We derive
the evolution equations for the solid stress when using the neo-
Hookean, Kelvin–Voigt, and Zener models. Next, we introduce the
problem setup and non-dimensionalization, followed by details of
a linear stability analysis. Then we discuss the results, and analyze
the instability mechanism. Finally, conclusions and discussions are
made.

We first derive equivalent ‘‘differential’’ models for the evolu-
tion equations of solid stress in an Eulerian frame. In this way,
the governing equations in two phases are consistently defined
in terms of velocity, pressure, and stress [4,18,19]. In characteriz-
ing material constitutive relations, virtual models of springs and
dashpots are often employed to describe the contributions from
the elastic and viscous effects, respectively. Different combinations
of springs and dashpots can effectively represent complex vis-
coelastic behaviors as highlighted by the schematics for the three
models (a–c) as shown in Fig. 1. The constitutive relation for the
simplest nonlinear hyperelastic solid, i.e., neo-Hookean solid, can
be characterized by a linear stress–strain relation τnh = S(B − I)
in a spring, where τnh is the elastic stress tensor, S is the shear
modulus, and B = F · F T is the Finger tensor where F (or index
form Fij = ∂xi/∂Xj) is the deformation gradient tensor serving as
a mapping from the initial (X) to the current (x) reference frame.
It is straightforward to show that the rate of change of the Finger
tensor satisfies Ḃ − L · B − B · LT

= 0, where L = Ḟ · F−1
=

(∇v)T (here Li,j = ∂vj/∂xi) and dot represents the material time
derivative Ḃij = ∂Bij/∂t + vkBij,k. Then the differential form of the
neo-Hookean model can be written as [19]:
neo-Hookean:

τ∇

nh = τ̇nh − L · τnh − τnh · LT
= S[∇v + (∇v)T], (1)

where τ∇

nh = τ̇nh−L ·τnh−τnh ·LT is the so called upper-convected
time derivative.

To proceed, the simplest viscoelastic solid, a Kelvin–Voigt solid,
can be characterized by connecting a spring with a dashpot in
parallel. When deformed, each element exerts stress (τ) and un-
dergoes deformation rate (v) accordingly. The total stress of the
element is hence defined by τtot = τ1 + τ2, where τ1 and τ2
are the stresses in the respective branches. By defining τ1 = τnh
from Eq. (1) and the viscous stress as τ2 = η[∇v + (∇v)T] (η is a

solid viscosity), we derive a two-equationmodel for a Kelvin–Voigt
material:

Kelvin–Voigt : τtot = τ1 + η[∇v + (∇v)T],

τ∇

1 = S[∇v + (∇v)T]. (2)

However, this model is known to produce reasonable values of
creep but incorrectly predicts the behavior of stress relaxation [20],
which can be improved by adding a second neo-Hookean spring
element (with modulus S2) in series with the dashpot to provide
a Zener model. Note that on the right branch, we need to consider
individual velocities associated with the spring v ′ and the dashpot
v ′′, which are related to the total velocity v through v = v ′

+ v ′′.
Therefore, the neo-Hookean stress in the right branch (spring 2)
now satisfies τ∇

2 = S2(∇v ′
+ ∇v ′T); the viscous stress becomes

τ2 = η(∇v ′′
+ ∇v ′′T). Again, by making use of the fact that τtot =

τ1 +τ2, after some algebra we derived the governing equations for
the total stress (τtot) and the neo-Hookean (τ1) stress on the left
branch (spring 1) in the Zener model:

Zener : τtot + λ1τ
∇

tot = τ1 + λ2(∇v + ∇vT),

τ∇

1 = S1
(
∇v + ∇vT) , (3)

where λ1 =
η

S2
and λ2 =

η

S2
(S1 + S2).

Consider an incompressible Newtonian fluid past a gel film as
shown in Fig. 1 with material constitutive relations constructed
above. The fluid layer with thickness R is bounded by the solid at
the bottom and a rigid wall on the top moving with a constant
velocityUw. The solid gel with thicknessHR is fixed on a rigid plate.
Following Kumaran et al. [5] and Gkanis and Kumar [8], we use R
as the length scale, neo-Hookeanmodulus S1 as the pressure/stress
scale, µf/S1 as the time scale, and RS1/µf as the velocity scale. The
Reynolds number is then defined by Re = ρfS1R2/µ2

f . We ignore
the inertia effect (Re ≪ 1), and assume the fluid flow is governed
by the Stokes equation. The dimensionless governing equations
can be written as:

∇ · vf = 0, −∇pf + ∇
2vf = 0, (4)

where pf and vf are the pressure and the velocity field in the
fluid, respectively. The solid is assumed to be incompressible. The
conservation of mass and momentum equations are written in the
Eulerian frame as:

∇ · vs = 0, −∇ps + ∇ · τs = 0, (5)

where vs and ps are the dimensionless solid velocity and pressure,
respectively. And τs is a total stress tensor. The constitutive equa-
tions for the Zener model become

τs + λ̂1τ
∇

s = τnh + λ̂2(∇vs + ∇vT
s ), τ∇

nh = ∇vs + ∇vT
s , (6)

where λ̂1 =
S1
S2

ηs
µf

and λ̂2 =

(
S1+S2
S2

)
ηs
µf

respectively represent the
relaxation and viscous effects, and τnh represents the dimension-
less neo-Hookean stress. Note that λ̂1 and λ̂2 are related to each
other by λ̂2 = λ̂1 + ηs/µf, and hence λ̂1 < λ̂2. Furthermore, in the
limit λ̂1 → λ̂2 = λ, it is easy to show that the above equations
reduce to λ(τs − τnh)

∇
+ (τs − τnh) = 0, or in the Lagrangian

frame, λ d
dt

[
F−1

· (τs − τnh) · F−T
]
+
[
F−1

· (τs − τnh) · F−T
]

= 0.
When there is no pre-stress applied on the gel, it is trivial to show
that τs = τnh, i.e., reduction from the full Zener model to the neo-
Hookeanmodel. Therefore, the neo-Hookeanmodel (λ̂1 = λ̂2 = 0)
and the Kelvin–Voigtmodel (λ̂1 = 0, λ̂2 ̸= 0) appear to be the two
asymptotic limits of the Zener model.

To supplement the governing equations with boundary con-
ditions, we assume periodicity in x1-direction, and apply no-slip
conditions on the top (moving) and bottom (stationary) rigidwalls.
The dimensionless wall velocity is vf = Gê1 at x2 = 1, where
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G = µfUw/RS1 characterizes the strength of the applied shear
flow field on the solid. At the fluid/solid interface, the velocity and
traction are continuous:

vf = vs, σf · n + Tκn = σs · n, (7)

wheren is the normal vector to the interface, T is the dimensionless
surface tension scaled by S1R and κ is the curvature of the interface
scaled by R−1. The Eulerian models derived above are equivalent
to the conventional Lagrangian models which typically solve for
the displacement field, and simplify themathematical treatment of
the fluid–solid coupling at the interface to permit a more straight-
forward implementation of the velocity and traction continuity
conditions [18].

To perform a linear stability analysis, we need to derive the
base-state solutions when the interface is flat. The steady-state
velocity solution in the fluid is simply a planar Couette flow vf =

(v1, v2) = (Gx2, 0), and the fluid stress is given by σf = −pfI+τf =(
−pf G
G − pf

)
. In the solid, the base-state solutions can be derived by

solving the initial transient dynamics during which a fully devel-
oped shear flow start exerting on the gel. For the neo-Hookean
model (τs = τnh), the (symmetric) total stress tensor in the solid
is defined as σs = −psI + τnh =

(
−ps + τnh

11 τnh
12

τnh
12 − ps + τnh

22

)
. It is also

reasonable to assume that during the initial transient, the induced
velocity field is unidirectional, i.e., ∂/∂x1 = 0 and vs = (v1(x2), 0).
Then the constitutive equations in Eq. (6) reduce to

∂τ nh
11

∂t
= 2τ nh

12
∂v1

∂x2
,

∂τ nh
12

∂t
=

∂v1

∂x2
,

∂τ nh
22

∂t
= 0. (8)

When there is no pre-stress in the solid, i.e., τ nh
ij = 0 at t = 0,

it is apparent that τ nh
22 = 0. Next, integrating both sides of the

remaining two stress equations leads to

τ nh
12 =

∫ T

0

∂v1

∂x2
dt =

∂u1

∂x2
= G,

τ nh
11 = 2

∫ T

0
τ nh
12

∂v1

∂x2
dt =

∫ T

0

∂
(
τ nh
12

)2
∂t

dt = G2,

(9)

where u1 =
∫ T
0 v1dt is the displacement. Thus the total stress

tensor at equilibrium reads

τnh =

(
τ nh
11 τ nh

12

τ nh
12 τ nh

22

)
=

(
G2 G
G 0

)
. (10)

In the Kelvin–Voigt model and the Zener model, since vs = 0 at
equilibrium, Eq. (10) also serves as the base-state solution for the
three solid models. Therefore, the base-state total stress can be
written as

σs = −psI + τs =

(
−ps + G2 G

G − ps

)
. (11)

Note that a first normal stress difference appears, i.e., τ s
11 − τ s

22 =

G2. At the flat interface (i.e., n = (0, 1)), Eq. (7) reduce to σf · n =

σs · n and pf = ps.
A standard linear stability analysis is employed to study the

growth of disturbances [21]. All physical disturbance variables f ′

can be expanded with respect to normal modes f ′(x1, x2, t) =

f̃ (x2) exp(ikx1 + αt), where f̃ is the complex-valued amplitude
functions, k is the wavenumber, and α is the complex-valued
growth rate. The governing equations in Eqs. (4)–(6) are linearized,
and then transformed into the Fourier space for the disturbances of
(ṽf, p̃f) in fluid and (ṽs, p̃s, τ̃s, τ̃nh) in solid. After some algebra, we
are able to derive two fourth-order ordinary differential equations
for the vertical velocity components ṽf

2 and ṽs
2 which admit the

following general solutions:

ṽf
2 = A1 exp(kx2) + A2 exp(−kx2) + A3x2 exp(kx2)

+ A4x2 exp(−kx2), (12)
ṽs
2 = B1 exp(kx2) + B2 exp(−kx2) + B3 exp(ξ1x2)

+ B4 exp(ξ2x2), (13)

where ξ1,2 =
−iGk

(
1+αλ̂1

)
±k

√
−G2α

(
1+αλ̂1

)(
λ̂1−λ̂2

)
+

(
1+αλ̂2

)2
1+αλ̂2

, Ai and Bi

(i = 1, 2, 3, 4) are eight unknown coefficients, four of which can be
eliminated by boundary conditions at the two walls. For the neo-
Hookean solid, we obtain ξ1,2 = (−iG ± 1) k independent of α, and
again, recover the solutions obtained by Gkanis and Kumar [8].

The two solutions above are coupled through the kinematic
condition
∂δ

∂t
+ v1

∂δ

∂x1
= v2, (14)

imposed at the perturbed interface x2 = δ(x1)where |δ| ≪ 1. It can
be further linearized as ∂δ

∂t = v′

2 around the flat plane at x2 = 0,
and v′

2 is the fluid (or solid) velocity disturbance. The velocity and
traction continuity conditions lead to

v′

1
f
+ Gδ = v′

1
s
, (15)

v′

2
f
= v′

2
s
, (16)

∂v′

1
f

∂x2
+

∂v′

2
f

∂x1
+ G2 ∂δ

∂x1
= τ ′

12, (17)

− p′

f + 2
∂v′

2
f

∂x2
+ T

∂2δ

∂x21
= −p′

s + τ ′

22. (18)

The first normal stress difference from the base state (G2) now
appears at the left-hand-side of Eq. (17). The above equations are
transformed using the normal modes to the Fourier space where
we solve the growth rate α numerically for given values of H, k, T ,
G, λ̂1, and λ̂2.

Growth Rate. In Fig. 2,we show the real part of the growth rate of
disturbance, Re(α), by varying thickness ratio (H), surface tension
(T ), and applied shear strength (G). When there is no surface
tension at the interface (T = 0), for a thin solid (H = 0.4, panel
(a)), Re(α) reaches a plateau at high wavenumber asymptotically,
indicating a short wave instability. For a relatively thick film (H =

4.0, panel (b)), the maximum growth rate occurs at a finite k,
hence indicating a finite-wavelength instability. Panels (c) and (d)
show Re(α) as a function of k when surface tension is included,
and chosen as T = 10. In both cases, the surface tension can
effectively eliminate instability growth at high wavenumber. The
obtained growth rates of the neo-Hookean model are identical to
those obtained by Gkanis and Kumar [8].

Although the instabilities in panels (b)–(d) all appear to be
finite-wavelength, their profiles are very different, leading to
distinctive features shown later in the corresponding marginal-
stability curves. In panel (b) where T = 0, while instability is
induced at finite k and then more and more enhanced as the
applied fluid shearG increases, the short-wave feature still remains
as Re(α) saturates at large k. In panels (c) and (d)when T ̸= 0, there
are typically two separated regimes of peaks visible: One occurs at
small k, and the other occurs at relatively large k. It is seen thatwith
surface tension, the disturbance grows much faster at finite/large
k regimes as G increases. Conversely, for thick films, instabilities
appear to be more strengthened at small k.

Next, we consider the two viscoelastic models and make com-
parisons with the neo-Hookean model. The five cases presented
in Fig. 3 follow a progression from the basic neo-Hookean model
(black) to the Kelvin–Voigt model (red), and then to a full Zener
model (blue). In the Kelvin–Voigt model where λ̂1 = 0 and λ̂2 ̸= 0,
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Fig. 2. The growth rate Re(α) as a function of k for the neo-Hookean solid: (a) H = 0.4, T = 0; (b) H = 4.0, T = 0; (c) H = 0.4, T = 10; (d) H = 4.0, T = 10. The open
circles are the results obtained by Gkanis and Kumar [8].

Fig. 3. Comparison of the growth rate Re(α) as a function of k for the neo-Hookean, Kelvin–Voigt, and Zener solids: (a) H = 0.4, T = 0,G = 5; (b) H = 4.0, T = 0,G = 5;
(c) H = 0.4, T = 10,G = 11; (d) H = 4.0, T = 10,G = 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

again, we find that increasing the effective solid viscosity (i.e., in-
creasing λ̂2) suppresses instability at large k in both thin and thick
gels, whichmakes the finite-wavelength instabilities dominate. On
the other hand, in panels (a, c) we also observe that the instabilities
are enhanced at finite wavenumbers to form local maximum for
thin gels.

To examine the relaxation effect in the Zenermodel, we fix λ̂2 =

0.1 and vary the dimensionless relaxation time λ̂1.We observe that
increasing λ̂1 shifts Re(α) upwards. As λ̂1 approaches λ̂2, this effect
becomes increasingly pronounced and the curve gradually returns
to that of the neo-Hookean model, consistent with the analytical
predictions as λ̂1 → λ̂2 .

Mechanism.As noted byGkanis andKumar [8,13], the interfacial
instability in the neo-Hookean solid is due to the coupling of the
first normal stress difference and the surface fluctuation δ appear-
ing in the interfacial condition. Here we adopt their explanation
by considering a sinusoidal surface perturbation δ = ε sin

( 2π
k x1

)
as shown in the schematic in Fig. 4(a). The traction continuity
condition in Eq. (17) essentially suggests the coupling term G2δx1
has a 90◦ phase lag compared to velocity (and shape δ) fluctuations
in Eq. (15),which tends to compress thewave crests and extend the
valleys (marked by the black solid arrows), and hence destabilize
the interface.

To understand the solid viscous effects in the Kelvin–Voigt
model, we rewrite the shear stress component in Eq. (17) in the
Fourier space as:

τ̃ elast
12 − τ̃ f

12 = G2δ̃x1 − τ̃ vis
12 =

[
G2

− αλ̂2

(
D2

k2
+ 1

)]
δ̃x1 . (19)

In the above we split the solid stress τs into the contributions from
the hyperelastic (due to the neo-Hookean elasticity, and denoted
by ‘‘elast’’) and viscous (due to the viscous term in the Kelvin–
Voigt model, and denoted by ‘‘vis’’) effects. It is clearly seen that
on the right-hand-side, as k → ∞ the viscous term provides an
asymptotic limit −αλ̂2 acting against the first coupling term due

to the normal stress difference. As illustrated by the red arrows
in Fig. 4(a), this relaxes the pinching effect at large k to stabilize
the surface though its behavior at small k is somewhat complex.
A similar argument can be made based on the traction balance in
the normal direction when examining the surface tension effect.
Following the same procedure we rewrite Eq. (18) as

σ̃ elast
22 − σ̃ f

22 = T δ̃x1x1 − σ̃ vis
22 =

(
T + 2αλ̂2

D
k2

)
δ̃x1x1 . (20)

The second derivative on δ results in a 180◦ phase shift so
there is a normal force acting to restore the perturbed inter-
face. Note that the right-hand-side of Eq. (20) can be written
as
(
−k2T − 2αλ̂2D

)
δ̃, suggesting that the contribution from the

surface tension is scaled by k2, and hence the inclusion of surface
tension causes a significant damping effect to suppress disturbance
growth, especially at large k [5,8].

Marginal Instability. We show the marginal stability curves for
the critical shear stress Gc (Fig. 4(b)) and the corresponding critical
wavenumber kc (Fig. 4(c)) as functions of the film thickness ratioH .
One obvious observation is that as H becomes large, all the models
produce almost the same results as the linear elastic model [5] due
to smaller deformation.We also observe that themarginal stability
curves of the Zener model again vary between those of the neo-
Hookean model and the Kelvin–Voigt model.

In panel (b) when surface tension is lacking, the three models
in fact predict very similar values of Gc, suggesting that adding
viscous effects to the solid does not necessarily stabilize the inter-
face. In contrast, the finite-wavelength instabilities observed in Fig.
3(a) and (b) for the Kelvin–Voigt model may even cause a slight
reduction in Gc, making the interface even more unstable under
shear. The critical stresses for thin films are found to be around
2.93 while vary inversely with H for thick films, with transitions
occurring for films with finite thickness (H ≈ 1).

Adding surface tension effectively stabilizes the interface for all
values of H , and yields finite-wavelength instabilities. Compared
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Fig. 4. (a) Schematic for a sinusoidal surface perturbation. The contributions of the first normal-stress difference and the solid viscous effect are marked by the black and red
solid arrows, respectively. The open arrows represent the stabilizing effect due to surface tension. (b, c): Critical values of the imposed strain Gc and the critical wavenumber
kc as a function of H . The black dotted lines are drawn at the locations where either Gc or kc tends to infinity. Inset in (c): Growth-rate curves near H ≈ 1 where short-wave
instabilities recur. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the neo-Hookean model, the solid viscous effects significantly
change the critical values for thin films, leading to yet more com-
plex behaviors. When H is sufficiently small, we first identify
a narrow regime where the system is stable to the fluid shear,
i.e., Gc → ∞ (marked by black dotted lines). At relatively large
H , finite-wavelength instabilities appear, and predict lower critical
values than the neo-Hookean case. As H further increases close to
the transition regime, Gc rises again in both the Kelvin–Voigt and
Zener models, up to maximum values around H = 0.7. Such non-
monotonic behaviors are due to the amplification (suppression) of
instability in the viscoelastic films at small (large) k as discussed in
Fig. 3(c), which correspondingly picks relatively low (high) critical
values of Gc for thin (thick) films.

While the Gc −H curves are very similar, themarginal curves of
kc in panel (c) exhibit distinctive features between the three mod-
els at T = 0. At small thickness, the finite-wavelength instabilities
in the two viscoelastic models are visible by the critical values of
kc beyond the stable regime; while kc → ∞ for the neo-Hookean
solid due to its short-wave nature. Interestingly, we observe that
in both the Kelvin–Voigt and Zener models, discontinuities of kc
occur near the transition regimes when H ≈ 0.7, in accordance
with the peaks in panel (b). As illustrated by the growth-rate
curves in the inset of panel (c), in the transition regimes, increasing
film thickness H drives a secondary finite-wavelength instability
arising at small wavenumber. As the growth-rate maximum shifts
from large towards small k, short-wave instabilitiesmay recur, and
hence kc saturates at infinity, resembling those observed in the thin
neo-Hookean films in Fig. 2. Moreover, inclusion of surface tension
effectively reduces kc as shown in the lower branch of marginal
curves in panel (c). Also a stable regime at small H is identified
for viscoelastic gels in accordance with panel (b) where Gc tends
to infinity, and then finite-wavelength instabilities dominate as H
increases.

In this paper, we investigate the interfacial stability of a soft gel
filmwhen subjected to a Newtonian Couette flow at zero Reynolds
number. We have constructed three differential models for the
solid stress including the neo-Hookean, Kelvin–Voigt, and Zener
models, and solve for the velocity, pressure, and stress fields in
both fluid and solid phases simultaneously in the Eulerian frame.
We have performed linear stability analysis to study the interfacial
instability by exploring the parameter spaces, and compared the
critical behaviors of the three solid models. We focus our attention
in the thin-film regime where the material nonlinearity is pro-
nounced; while for sufficiently thick films, all the models produce
very similar results as those predicted by linear models due to
small deformation. We find the interfacial instability is driven by
the first-normal stress difference in the base-state solution in the

solid phase. Compared with the neo-Hookean model, inclusion
of solid viscous effects leads to finite-wavelength instabilities in
both thin and thick films, although we still observe short-wave
instabilities recur in a narrow transition regime at finite film thick-
ness. When surface tension is included, the fluid/solid interface
becomesmore stable, and finite-wavelength instabilities are found
to dominate in all models. In addition, for viscoelastic gels we
have observed stable regimes for sufficiently thin films, as well as
intriguing non-monotonic features on themarginal stability curves
near the transition regimes where the film thickness is finite.

It is interesting to observe that when surface tension is neg-
ligible, the critical values of the applied shear strength (Gc ≈

2.93) seem to be well-characterized by the neo-Hookean model,
i.e., material’s hyperelasticity. Further analysis reveals that the
results obtained above can be directly extended to more general
hyperelastic Mooney–Rivlin model which is used for constitutive
relations in a wide range of materials. Recall the constitutive equa-
tion for a Mooney–Rivlin solid is given as τs = g1B + g2B−1,
where g1 and g2 are scalar functions of the invariants of B [22].
Thus the neo-Hookean model is a special case of the Mooney–
Rivlin model by choosing g1 = 1 and g2 = 0. It is easy to show
that B−1 satisfies a lower-convected derivative: Ḃ−1

+ LTB−1
+

B−1L = 0 [23]. Following the same procedure as before, we find
that a lower-convected model for the elastic stress τs ∝ I − B−1

yields the base-state solutions σs =

(
−ps G
G − ps − G2

)
and pf = ps +

G2, which lead to identical stability analysis results as the neo-
Hookean model where τs ∝ B − I . Hence the Mooney–Rivlin
model will generate the same results as the neo-Hookean model
as well. With this study, it is straightforward to construct more
elaborated solid models (e.g., poroelasticity), and apply similar
methodologies to investigate their stabilities when coupled with
fluid flows. It is also desired to perform direct simulations to
resolve new physics and phenomena associated with nonlinear
deformations in fluid/elastic-structure interactions.
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