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Cavitation is often regarded as a failure mode in soft materials. An intriguing phenomenon has

been recently discovered that fern sporangium can take advantage of drying-induced cavitation

instability in annulus cells to disperse spores at an extraordinarily high acceleration. Briefly, the

decrease of environmental humidity causes continuous bending of the sporangium and growth of

cavities inside the annulus cells, with the elastic energy accumulated in sporangium walls. When

the humidity is lower than a critical value, the cavities suddenly expand dramatically inside the

cells, causing a quick release of the elastic energy stored in the annular structure. As a result, like a

catapult, the sporangium snaps back and ejects the seeds at a high speed. Motivated by the observa-

tion, in this article, we study cavitation instability in a similar structure as the sporangium. To sim-

plify the problem, in our model, the mechanics of cells in the sporangium are described by the

polymer gel model, while the sporangium wall is modelled as a hyperelastic material. When the

environmental humidity is lower than a critical value, through energetic analyses, we can predict

the cavitation catapult phenomenon using the model. We hope that our study in this article can pro-

vide useful insights into the bio-inspired design of structures which can take advantage of cavita-

tion instability in soft materials. Published by AIP Publishing. https://doi.org/10.1063/1.5009747

I. INTRODUCTION

Plants can move in response to a variety of stimuli such

as light, temperature, humidity, or even a gentle mechanical

touch.1,2 Although the movement of plants is typically much

slower than animals due to the lack of muscles, in certain

scenarios, plants can also generate very fast motions through

elastic instability, fracture, or cavitation. For instance, the

fast closure of snap traps of the Venus flytrap results from

snap-buckling instability.3–5 As another example, cavitation

in cells has also been used by other plants like Curvularia,

Zygophalia jamaicensis, Memnoniella subsimplex, and fern

sporangium to generate fast motion.6

Cavitation in soft solids such as rubber, gels, and some

biological tissues has been commonly recognized as one fail-

ure mechanism.7–12 Pioneering work done by Gent has

shown that when a soft elastomer is subjected to hydrostatic

tension approaching 2.5 times of its shear modulus, small

cavities inside the elastomer may expand significantly and

cause the failure of the material.13–17 Reflection of the blast-

induced compressive wave in the brain can also generate a

large hydrostatic tension which may consequently result in

cavitation, as well as damages to the brain tissue.18 Recently,

we have found that drying can also cause cavitation instabil-

ity in a swollen gel with external constraints.19,20 Since cavi-

tation in soft solids often induces a large deformation or

even damage to the material,21–25 according to our knowl-

edge, few engineering structures have ever been fabricated

to make use of cavitation to realize novel functions.26–28

Some recent experimental studies have uncovered very

interesting phenomena that fern sporangium can eject spores

with an initial speed of up to 10 m/s and an acceleration of

106 g using the cavitation catapult mechanism.29 The term,

cavitation catapult, is a vivid analogy that the fern sporan-

gium exhibits fast closure motion to propel the spores like a

catapult by cavitation instability as shown in Fig. 1. Briefly,

triggered by the decrease of environmental humidity, the

entire spore dispersal process of fern sporangium can be

roughly divided into three stages, i.e., opening, fast bouncing

back, and closing.30 During the opening stage, a sporangium

opens slowly and stores bending energy in the annulus wall,

accompanied by the shrinkage of cells and loss of water, as

shown in Fig. 1(b). The fast bouncing back stage is caused

by the sudden and dramatic expansion of cavities inside cells

as shown in Fig. 1(c). Finally, the closing stage makes the

entire structure recover its original configuration. The sudden

and dramatic growth of cavities in the annulus cells plays a

vital role in dispensing the spores to a long distance.

According to our knowledge, though cavitation instabil-

ities have been adopted by several different plants for fast

motion such as the cavitation catapult in fern sporangium dis-

cussed above, the underlying mechanism has not been care-

fully studied, and a mechanics model of such a mechanism

does not exist. In this paper, we develop a mechanics model

of the cavitation catapult mechanism of fern sporangium. The

paper is organized as follows: in Sec. II, we propose a compu-

tational method to investigate cavitation instability in a par-

tially constrained gel subject to traction and change of

chemical potential of the solvent. In Sec. III, we study the cav-

itation catapult mechanism in the sporangium by using the

computational method developed in Sec. II. To simplify the
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problem, we use a gel model to describe the environmentally

responsive mechanical behaviors of cells in the sporangium.

We conduct finite element simulation to calculate the free

energy of the system by controlling the volumes of the cavi-

ties. By further assuming that the system always stays in a

deformed configuration with the lowest free energy, we suc-

cessfully predict discontinuous expansion of cavities in the

cell of the sporangium, as well as curvature change of the

annulus wall. We hope that our study in this article can pro-

vide useful insights into the bio-inspired design of structures

taking advantages of cavitation instability in soft materials.

II. MECHANICS MODEL OF CAVITATION INSTABILITY
IN A CELL

A. Constitutive model of a polymer gel

To develop a mechanics model of the cavitation catapult

mechanism of fern sporangium, we will adopt the constitutive

model of a polymer gel to describe the environmentally

responsive mechanical behaviors of cells as shown in Fig. 1,

by considering the following reasons: (1) mechanical behav-

iors of an individual cell are too complex to model precisely,

which is also beyond the scope of the current article; (2) it has

been well recognized that the mechanical behaviors of the cell

and polymer gel have several common features.31,32 For

example, both the cell and polymer gel can swell by absorbing

water when the environmental humidity is high, and shrink

when the humidity is low; both the cell and polymer gel can

be viewed as incompressible soft solids if the total amount of

the solvent inside remains unchanged. Next, we will briefly

review the constitutive model of a polymer gel, which has

been previously developed by us and others.33,34

Following previous studies on the constitutive modelling

of a polymer gel,33 we regard a stress-free and dry gel as the

reference state. The gel can deform when stress is applied

onto it or when the chemical potential of the solvent in the

environment changes. Deformation gradient of the gel can

be given by

FiK ¼
@xi Xð Þ
@XK

; (1)

where XK and xi are the coordinates of the same material point

in the reference state and current state, respectively. The nom-

inal stress siK and deformation gradient is a work-conjugate

pair, and the chemical potential of the solvent in the gel l and

its concentration C is another work-conjugate pair, namely,

siK ¼
@W FiK; Cð Þ

@FiK
and l ¼ @W FiK; Cð Þ

@C
; (2)

where W is the free energy density of the gel and C is defined

as the number of solvent molecules per unit volume of the

gel in the reference state.

Based on the Flory–Rehner model,35 the free energy

density of a polymer gel can be decomposed into two parts:

elastic energy of the stretching polymer network and mixing

free energy between the polymer and solvent. Explicitly, the

free energy density of a gel can be given by

W FiK;Cð Þ ¼ 1

2
NkT FiKFiK � 3� 2logJð Þ

� kT

X
XC log

XCþ 1

XC

� �
þ v

XCþ 1

� �
; (3)

where X is the volume per solvent molecule, N is the number

of polymer chains per volume in the reference state, v is a

dimensionless parameter measuring the energy of mixing, kT is

the absolute temperature in the unit of energy, and J ¼ det Fik

is the determinant of the deformation gradient.

Following previous work,33 we adopt molecular incom-

pressible assumption which can be written as J ¼ 1þ XC.

To integrate the constitutive model into finite element

modelling, it is convenient to change the variable C to chem-

ical potential l by a Legendre transformation

Ŵ FiK; lð Þ ¼ W FiK;Cð Þ � lC: (4)

Consequently, we can obtain

Ŵ FiK; lð Þ ¼ 1

2
NkT FiKFiK � 3� 2logJð Þ

� kT

X
J � 1ð Þ log

J

J � 1

� �
þ v

J

� �
� l

X
J � 1ð Þ:

(5)

FIG. 1. Cavitation catapult phenomenon of a fern sporangium (with the permission of the AAAS).29 (a) The structure of the sporangium of Polypodium aur-
eum. (b) A decrease of environmental humidity makes the annulus open gradually. (c) Sudden snap back of the annulus due to the appearance of cavities within

annulus cells.
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Equation (2) can then be rewritten as: siK ¼ @Ŵ FiK ;lð Þ
@FiK

. If the sol-

vent is water, we can simply link the chemical potential of the

solvent to the environmental humidity by l ¼ kT log RH, where

RH is the relative humidity of the environment.

In the current study, we conduct a quasi-static analysis

and only focus on the equilibrium state of the structure.

Therefore, the chemical potential in Eq. (5) is set to be

homogenous everywhere in the gel. We implement Eq. (5)

into the commercial software ABAQUS36 as a constitutive

model of the gel using the user-defined subroutine

(UHYPER) proposed by Hong et al.37

B. Computational method of cavitation instability in a
constrained gel

As shown in Fig. 1 and previous discussions, drying of a

constrained cell in the fern sporangium can trigger cavitation

instability. During the drying process, the environmental

humidity decreases, so the cell loses water and intends to

shrink. Due to the existence of mechanical constraints of the

annulus walls, tensile stress can be generated in the cell and

a small cavity/defect expands.

Cavity expansion in a cell can be either continuous or

discontinuous. To model both continuous and discontinuous

cavitation expansion in a cell, we develop a computational

modelling method in a constrained gel as shown in Fig. 2. In

the initial state, a tiny spherical cavity with volume V0 is

introduced into a swollen gel with homogeneous chemical

potential of the solvent l. Displacement of the gel surface

may be completely or partially fixed. When the chemical

potential of the solvent changes, and tractions are applied

onto the gel surface, the cavity deforms and expands. To

model the cavity expansion using the finite element method,

we control the volume of the cavity by filling the cavity with

an incompressible fluid, which has been used in our previous

study.38 The volume of the fluid cannot be changed by

changing the pressure applied onto it. Instead, we can change

the volume of the fluid with the assigned thermal expansion

coefficient by tuning its temperature. It is noted that the ther-

mal expansion of the liquid inside the cavity is used to pre-

cisely control the cavity volume in the FEM simulation,

which does not correspond to any real physical process. The

entire cavitating process is assumed to be in the isothermal

condition. In the simulation, the linear thermal expansion of

the liquid is adopted.

Specifically, modelling cavitation in a constrained gel

caused by drying is composed of two main steps. First, we com-

pute the deformation of the gel caused by the change of the

chemical potential of the solvent and the application of tractions,

by fixing the volume of a cavity. Subsequently, we change the

volume of a cavity gradually by changing the thermal expansion

of the fluid filled in it. The equilibrium configuration of the

entire structure can be calculated by finite element simulation.

As shown in some previous studies,20,25 surface tension can play

an important role in cavitation. To take account of the effects of

surface tension, we calculate the free energy of the system as

F ¼ Uþ Ac; (6)

where U is the free energy of the structure obtained from

finite element simulation, A is the surface area of the cavity,

and c is the surface tension. As a result, the free energy of

the structure can be obtained as a function of the volume of

the cavity. By assuming the structure always stays in the

state with minimized free energy, we can determine the vol-

ume of the cavity in the gel with known chemical potential

of the solvent and applied tractions.

In the analysis described above, we neglect the effects of

surface energy on the deformation of the structure. The

assumption that elastic and surface energies are independent

is not strictly correct, as the shape of the cavity can change to

minimize the combined energy in Eq. (6). However, it is fairly

complex to solve the coupled elastocapillary problem via

FEM simulation, as shown in recent studies.25,39–41 While this

simplifying assumption undoubtedly leads to errors in the cal-

culated energy landscape, especially for small cavities, we

believe it does not change the qualitative behavior. Further, as

we will show later, this simple treatment enables us to capture

the main features of the cavitation catapult phenomenon.

C. Validation of the computational method

To validate the computational method proposed above,

we compare the numerical results with the analytical results

FIG. 2. The schematic of our computational method for analyzing cavitation instability in a gel during the drying process with constraint and applied forces. In

the initial state, a small cavity is introduced into a swollen gel with mechanical constraints. With the change of the chemical potential of the solvent and appli-

cation of traction on the surface of the gel, the cavity may expand and deform. To control the volume of the cavity, we use an incompressible fluid to occupy

the space of the cavity as a technical approach. The volume of the fluid can only be changed by changing its temperature, but not by applying stress.

Therefore, in the simulation, we can precisely control the volume of the cavity by varying the temperature of the fluid with the assigned thermal expansion

coefficient.
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of drying-induced cavitation in a constrained spherical gel

obtained in a previous paper.20 A free swelling spherical gel

with an initially introduced infinitesimal cavity is con-

strained by its external boundary. With the decrease of the

chemical potential of the solvent, we can calculate the free

energy of the gel as a function of cavity size, both analyti-

cally and numerically. The material parameters shown in Eq.

(3) are set to be NX ¼ 10�3 and v ¼ 0:2. In the finite ele-

ment simulation, we use 1200 CAX4H elements for the gel

and embed 40 F2D2 fluid elements on the surface of the cav-

ity for simulating the fluid filled in the cavity. We assign the

linear thermal expansion coefficient and temperature change

to the fluid elements to control the volume of the fluid filled

inside the cavity in the simulation. Figure 3 shows the com-

parison between the free energy of the constrained spherical

gel as a function of cavity size obtained from finite element

simulation and analytical formulation. The agreement of the

results as shown in Fig. 3 validates the simulation method

proposed above.

III. RESULTS AND DISCUSSIONS

A. Cavitation instability of a partially constrained gel

In this section, we first study cavitation instability in a

partially constrained gel as shown in Fig. 4. We consider a

free-standing gel in a dry state as the reference state as shown

in Fig. 4(a). The width and height of the rectangular gel are W
and H, respectively, with an aspect ratio W/H¼ 0.5. Without

losing generality, we assume the deformation of the gel is in

the plane-strain condition. A tiny circular cavity is introduced

in the center of the gel. The radius of the cavity is set to be

2% of its width. In the initial state, as shown in Fig. 4(b), the

dry gel swells freely with the swelling ratio k0 and the chemi-

cal potential of the solvent in the gel becomes zero.

Consequently, the width and height of the gel become k0W
and k0H, respectively, and the radius of the cavity becomes

k0A. During the drying process, as shown in Fig. 4(c), the left,

right, and bottom surfaces of the free-swollen gel are con-

strained by rigid walls, while its top surface is maintained

traction-free, and the chemical potential of the solvent in the

environment decreases. To stay in a chemo-mechanical equi-

librium state, the gel loses the solvent and intends to shrink,

resulting in the expansion of the cavity as shown in Fig. 4(c).

Because of the influence of constraints, the shape of the cavity

deviates from its initial circular shape during expansion.

The constitutive model of the gel is given by Eq. (5). In

the simulation, the material parameters of the gel are set to

be NX ¼ 10�3 and v ¼ 0:2, which are representative values

for most hydrogels. We have also verified that varying these

two values within a reasonable range can lead to some quan-

titative, but not qualitative, change of our results. Based on

Eq. (5) and our previous work,20 it is easy to show that the

swelling radio k0 of a free-standing gel can be determined by

solving the following nonlinear algebra equation:

Nv
1

k0

� 1

k3
0

 !
þ log 1� 1

k3
0

 !
þ 1

k3
0

þ v

k6
0

¼ 0: (7)

FIG. 3. Validation of our computa-

tional model by comparing the analyti-

cal solution of cavitation in a swollen

spherical gel under external constraint

with the simulation results. The open

circles are the simulation results and

the solid lines are the analytical results

from our previous study.20 The surface

energy density is c/(NkTA)¼ 20 and F0

is the free energy of the system when

the volume of the cavity is the same as

its initial stage.

FIG. 4. The schematic of the numeri-

cal simulation of a partially con-

strained gel. (a) Dry hydrogel with a

small cavity inside is regarded as the

reference state. (b) Free swelling state

of the hydrogel with the chemical

potential of water l ¼ 0. (c) The swol-

len hydrogel is partially constrained.

Decrease of the chemical potential of

the water in the environment may

result in continuous or discontinuous

expansion of the cavity.
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k0 ¼ 3:215 is the only solution for the above equation. In

the simulation, there are 1022 CPE4H elements for the gel.

The cavity is filled with an incompressible fluid with 26

F2D2 elements on the cavitation surface. The number of ele-

ments is determined through a mesh convergence check. The

boundary conditions are the same as that illustrated in Fig.

4(c). During the numerical simulation process, in the first

step, we decrease the chemical potential of the solvent in the

gel from zero to an aimed negative value; in the second step,

we increase the volume of the incompressible fluid through

thermal expansion while keeping the chemical potential of

the solvent unchanged. As a result, we can obtain the equilib-

rium configurations of the gel for a fixed chemical potential

of the solvent and different volumes of the cavity from finite

element simulation. We can also obtain the free energy of

the gel in different configurations. We use Eq. (6) to further

take account of the effect of surface energy.

Figure 5(a) shows the normalized free energy of the gel

as a function of cavity size for different chemical potentials

of the solvent. For a certain range of chemical potentials of

the solvent, the free energy curves show a double-well shape

giving two local minima with the surface energy density c/

(NkTA)¼ 25. The left local minimum in the free energy

landscape, as shown in the inset of Fig. 5(a), corresponds to

the small cavity size, while the right local minimum corre-

sponds to the large cavity size. We assume the system will

always stay in the configuration with the lowest free energy.

When the two local free energy minima have the same value,

the cavity can expand discontinuously with further decrease

of the chemical potential of the solvent. The phenomenon is

a reminiscent of first-order phase transition.

By selecting the cavity size which minimizes the total

free energy of the gel, we plot the cavity volume as a func-

tion of the chemical potential with different surface tension

densities as illustrated in Fig. 5(b). Provided a non-zero sur-

face tension, when the chemical potential of the solvent is

large, the cavity is small; when the chemical potential of the

solvent is smaller than a critical value, the radius of the cav-

ity increases discontinuously. It also shows that the critical

chemical potential of the solvent is lower for a larger surface

tension. When the surface tension density is zero, the growth

of the cavity becomes continuous with the change of the

chemical potential of the solvent, which demonstrates the

importance of surface tension for the cavitation instability.

Figure 5(c) plots the shapes of the cavity and deforma-

tion of the partially constrained gel for different chemical

potentials of the solvent, which correspond to the lowest free

energy of the system. As discussed earlier, with the decrease

of the chemical potential of the solvent, a tiny and circular

cavity can dramatically expand and deform to a noncircular

shape. In particular, the cavity size changes dramatically

around the critical chemical potential of the solvent, which

FIG. 5. (a) Free energy landscape of a

partially constrained gel with a cavity

(Fig. 4) as a function of the volume of

the cavity, for different chemical

potentials of the solvent in the environ-

ment. F0 is the free energy of the gel

when the volume of the cavity is equal

to its initial value. (b) The normalized

volume of the cavity as a function of

chemical potential of the solvent in the

environment for different surface

energy densities of the gel. (c) The

configurations of the gel for four dif-

ferent chemical potentials of the sol-

vent in the environment with the

surface energy density of the gel: c/

(NkTA)¼ 20. The color in the figure

represents the maximal principal loga-

rithmic strain.
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may result in a discontinuous change of the reaction force

exerted by the constrained walls to the gel. This is essential

for the cavitation catapult mechanism as described in Sec. I.

B. Modelling of the fern cavitation catapult

A fern sporangium is typically composed of multiple

cells constrained by elastic annulus walls as shown in Figs.

1(a) and 1(b). The constrained cells shrink with the decrease

of the chemical potential of the solvent in the environment

and actuate the bending of the elastic annulus. When the

chemical potential of the solvent is decreased lower than a

critical value, small cavities in the cells suddenly expand sig-

nificantly causing the elastic annulus to snap back like a cat-

apult. In this section, we will study cavitation instability in

the fern sporangium.

The geometric dimensions of the fern sporangium struc-

ture are illustrated in Fig. 6(a), which are comparable to the

dimensions reported in the literature.30 The structure con-

tains 12 cells with width L and height H, and the elastic

annulus wall with d denoting its thickness. 12 identical tiny

cavities are introduced into the center of each cell. The initial

radius of each cavity is set to be 0.02L. The simulation pro-

cedures are similar to those in the single partially constrained

gel as described above, except that the constrained walls are

now elastic and deformable. To simplify the problem, we

assume the deformation of all the 12 cavities is always iden-

tical. In the simulation, we use the polymer gel model sum-

marized previously for the cells with the material parameters

NX ¼ 10�3 and v ¼ 0:2. We adopt the incompressible Neo-

Hookean model for the annulus wall with shear modulus G.

Consequently, one additional dimensionless parameter G/
NkT is added to the problem. The elastic modulus of the

FIG. 6. (a) The schematic of a fern sporangium structure containing 12 cells

and elastic walls for simulation. The right end of the structure is attached to

a rigid plate to avoid end distortion. The incompressible neo-Hookean model

is adopted as a material model for the elastic wall with shear modulus G.

The cells are modelled by polymer gel with shear modulus given by NkT.

The dimensionless parameter G/NkT represents the stiffness ratio between

the elastic wall and the gel. (b) The free energy of a fern sporangium as a

function of cavity volume, for four different chemical potentials of the sol-

vent in the environment. The surface energy density of the gel, c/(NkTA) is

set to be 20. The shear modulus ratio between the elastic wall and the gel is

set to be G/NkT¼ 150. F* is the free energy of the elastic wall, F is the free

energy of the gel, and F0 is the free energy of the entire structure when the

volume of the cavity equals to its initial value.

FIG. 7. The volume of the cavity and curvature change of a fern sporangium

as a function of the chemical potential of the solvent in the environment. (a)

The cavity expands discontinuously when the chemical potential of the sol-

vent in the environment is decreased below a critical value. (b) The curva-

ture of the sporangium decreases discontinuously when the chemical

potential of water in the environment is below a critical value. The surface

energy density of the gel is set to be c/(NkTA)¼ 20.
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annulus wall is known to be much stiffer than the annulus

cells. However, we cannot find experimental measurement

of the elastic modulus of the annulus wall in the literature.

Therefore, we simply assume the elastic modulus of the

annulus wall is much larger than that of the annulus cell.

Specifically, we set the dimensionless parameter G/NkT to

be between 100 and 200.

As the chemical potential of the solvent decreases, the

solvent molecules leave the gels causing shrinkage and bend-

ing of the structure. We use F and F* to denote the free

energy of the gels and elastic annulus wall, respectively. The

total free energy of the structure is the summation of the two

parts: FþF*. Figure 6(b) shows the normalized free energy

of the system as a function of the cavity volume with differ-

ent chemical potentials of the solvent. Similar to Fig. 5(a),

when the chemical potential of the solvent is high, the free

energy curves have only one local minimum at a small cavity

size; when the chemical potential of the solvent is low

enough, the free energy curves show a double-well shape

giving two local minima. The left local minimum in the free

energy landscape corresponds to a small cavity close to its

initial size. The right local minimum corresponds to the large

cavity size. We also assume that the real configuration of the

sporangium structure is the one which minimizes the total

free energy. When the two local free energy minima have

the same value, the cavities can expand discontinuously with

further decrease of the chemical potential of the solvent.

Figure 7(a) shows the change of cavity volume as a

function of the chemical potential of the solvent for different

stiffness of the material of the annulus wall. With decreasing

stiffness of the material of the annulus wall, the critical

chemical potential for the discontinuous expansion of the

cavity decreases. In the system as shown in Fig. 6(a), in addi-

tion to the cavity size, the curvature of the annulus wall is

also an important parameter directly relevant to the cavita-

tion catapult mechanism. We describe the bending of the

annulus wall by its curvature, defined as j ¼ h=s, where h
represents the rotating angle of the right end and s is the

inner arc length of the annulus wall. The curvature is defined

as a negative value when the center of curvature is on the

inner side of the annulus wall. When the annulus wall

deforms into a straight beam, the corresponding curvature is

zero. In Fig. 7(b), we plot the curvature of the annulus wall

as a function of the chemical potential of the solvent. Before

the chemical potential of the solvent reaches the critical

value, the curvature increases continuously with the decrease

of the chemical potential of the solvent, which corresponds

to the opening stage of the sporangium. The annulus is

straight when the curvature is zero. When the chemical

potential of the solvent reaches the critical value, the curva-

ture of the wall drops discontinuously.

In Fig. 8, we plot the deformed configurations of the

sporangium, which minimize the total free energy of the

structure, with different chemical potentials of the solvent.

In the plots, we set the dimensionless surface energy density

c/(NkTA)¼ 20 and the dimensionless shear modulus G/

NkT¼ 150, corresponding to the black dash-line in Fig. 7.

The order of magnitude of the dimensionless surface energy

FIG. 8. The configurations of a fern sporangium with minimum free energy of the entire structure for different chemical potentials of the solvent in the envi-

ronment: (a) l/kT¼�2.5� 10�4, (b) l/kT¼�1� 10�3, (c) l/kT¼�1.5� 10�3, (d) l/kT¼ �3� 10�3, and (e) l/kT¼ �3.67� 10�3. The surface energy den-

sity of the gel is c/(NkTA)¼ 20 and the shear modulus ratio between the material of the elastic wall and the gel is set to be G/NkT¼ 150. The color in the figure

represents the maximal principal logarithmic strain.
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density is determined by assuming c � 0.1 N/m (the surface

tension of water is around 0.07 N/m) and initial cavity size A

� 0.1 um (the size of the annulus cell is around 20 um).

When l/kT¼ 0, the sporangium is closed in the annulus.

With the decrease of the chemical potential of the solvent,

the cells shrink and elastic energy is mainly stored in the

annulus wall. The annulus becomes straight at l/

kT¼�10�3, corresponding to the zero-curvature point as

shown in Fig. 7(b). With further decrease of the chemical

potential of the solvent, the annulus bends to the opposite

direction and its curvature becomes positive. When the

chemical potential of the solvent is lower than a critical

value, a discontinuous expansion of cavities and decrease of

curvature of the annulus wall happens. During the discontin-

uous reduction of the curvature, a portion of the elastic

energy stored in the structure will convert to kinetic energy

in a short period, which corresponds to the fast snap back of

the annulus wall. We would like to point out that the pre-

dicted cavitation-induced curvature reduction as shown in

Figs. 7(b) and 8 is not as big as what has been observed [Fig.

1(b)], which is probably due to two main reasons: first, our

simulation is based on quasi-static assumption with

completely ignoring the inertia of the structure, while the

real snap back process of the sporangium is dynamic; sec-

ond, the cavitation instability can induce a really large defor-

mation in the cells and fracture may happen, which can also

increase the discontinuous reduction of curvature. It is noted

that certain damages in cells will not affect their functionali-

ties and can be self-healed.

IV. CONCLUSIONS

In this article, we study the cavitation catapult mechanism

in fern sporangium. In the modelling, the environmental-

responsive mechanical behaviors of cells in the sporangium

are described by the chemo-mechanics model of the polymer

gel. Using the finite element method, we study the cavitation

catapult mechanism of fern sporangium through energetic

analyses. With continuous decrease of the chemical potential

of the solvent, we successfully predict a sudden and discontin-

uous cavity expansion in the cells of fern sporangium, and

also the corresponding abrupt decrease of curvature of the

annulus wall. It is consistent with the recent experimental

observations in fern sporangium. Through our analysis, we

also found out that the magnitude of surface energy density of

the cell and shear modulus of the sporangium wall play impor-

tant roles in the cavitation catapult phenomenon. The results

obtained and the modelling method presented in the article

may be directly applicable for designing structures using

responsive gels to realize the cavitation catapult mechanism.
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