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Abstract
Most bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise
coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed
in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring
which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small
portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth
in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the
energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform
turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the
crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The
non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in
the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain
the existence of a small portion of peripheral ring remained as hinge after the popping event.
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1 Introduction

Crack propagation-driven popping phenomena can bewidely
seen in plants and fungi. For instance, the seedpod of jewel-
weed can effectively discharge the seeds to a long distance
through popping event which is known to be driven by fast
crack growth between the valves (Sakes et al. 2016). As
another example, sporangium of Pilobolus (a genus of fungi)
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can suddenlybreak from the sporangiophore andbepropelled
forwardby cell sap jet (Sakes et al. 2016). Interestingly,more-
over, recent experimental studies on Staphylococcus Aureus
(S. Aureus) cells revealed that its daughter cell separation
may be also through crack propagation-driven popping event
(Zhou et al. 2015, 2016). The breakage of the peripheral ring
during daughter cell separation has shown to be completed
within several milliseconds in the experiments. Such a rapid
separation of S. Aureus daughter cells with no detectable
intermediate stages (Tzagoloff and Novick 1977; Zhou et al.
2015, 2016) is in direct contrast to gradual morphological
changes often observed during division of other bacteria or
eukaryotic cells (Egan and Vollmer 2013). It was proposed
that such fast separation of S. Aureus daughter cells might
be driven by mechanical crack propagation in the peripheral
ring (Zhou et al. 2015, 2016), and a large stressmight be gen-
erated in the peripheral ring during the inflation of daughter
cells (Zhou et al. 2015).

While the computation of stress field can provide impor-
tant insights into the failure of biologicalmaterials, themodel
based on fracture mechanics theory is necessary to fully
understand crack propagation in those biological processes

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10237-018-1019-6&domain=pdf


Y. Jiang et al.

Fig. 1 Schematics of S. Aureus daughter cell separation, recapping the
main observation of a recent experiment (Zhou et al. 2015). A periph-
eral ring connects two daughter cells before separation. When the two
daughter cells are inflated large enough, fast separation or so-called
popping event is observed in the experiments (Zhou et al. 2015). After

the fast separation, a small portion of the peripheral ring is remained
as a hinge connecting the two daughter cells. Three major components
of the cell structure are highlighted and are considered in the model:
the outer wall, the septum and the peripheral ring. V0 and Vt are the
volumes of the daughter cells before and after inflation, respectively

discussed above. It is well known that crack growth is often
initiated from existing defects. However, it is practically dif-
ficult, if possible, to predict themagnitude of stress and strain
near a defect with an irregular shape (Griffith 1921). Instead,
on the basis of fracture mechanics theory, the critical con-
dition for a crack to grow (namely, the energy release rate
being equal to the fracture toughness of the material) has
been validated in numerous experiments (Anderson 2017).
In addition, under certain loading conditions, whether a crack
propagates stably or unstably can only be understood based
on fracture mechanics theory (Hutchinson and Paris 1979).

In this article, we develop a fracture mechanics model for
the breakage of peripheral ring during S. Aureus daughter cell
separation. By using finite element analysis, we calculate the
energy release rate associated with the crack growth in the
peripheral ring, when daughter cells are inflated by a uniform
turgor pressure. Although the cell separation reported in the
experiment is fast dynamic process, our fracture mechanics
model is quasi-static, considering that the crack propagation
speed (∼1mm/s) is still far below the sound speed of the
material and thus the material inertia has negligible effects.
Our results show that with a fixed volume growth of the
inflated cells, when the crack is short, the energy release
rate increases with the increase in crack length. The energy
release rate reaches amaximum value when the crack is of an
intermediate length and then decreases with further increase
in crack length. Such a non-monotonic change of energy
release rate with crack length can be used to explain the fast
crack propagation and the subsequent crack arrest observed
in the experiments (Zhou et al. 2015, 2016).

2 Modeling of the fracture of the peripheral
ring during S. Aureus daughter cell
separation

2.1 Mechanical model of cell

We construct mechanical models of S. Aureus to determine
the deformation and stress distribution accompanying with
the growth and “popping” event during the daughter cell
separation. The cell structure in our model is composed of
three major components—the outer wall, the septum and the
peripheral ring (Fig. 1). The S. Aureus cell prior to the “pop-
ping” event is modeled as a prolate ellipsoid in accord with
the experimental observations (Matias and Beveridge 2007;
Zhou et al. 2015). The septa are two parallel plates in the
middle of the cell, which separate one cell to two hemi-
spherical daughter cells. One daughter cell is composed of
one outer wall and one septum, connected by a peripheral
ring to the other before cell separation. For simplicity, we
assume that both the septum and the peripheral ring are cir-
cular with the same radius. The outer cell wall, the septum
and the peripheral ring are assumed to be composed of the
same isotropic, incompressible, hyperelastic material, whose
constitutive relationship can be given by the Neo-Hookean
model (Treloar 1975). The geometrical parameters of the
model are selected based on the studies of S. Aureus cell divi-
sion (Zhou et al. 2015). Details of the parameters adopted in
the mechanical model are given in “Appendix.”

After the formation of septum during the S. Aureus cell
division, the volume of each daughter cell continues to grow
exponentially with time (Godin 2010; Zhou et al. 2015),
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Fig. 2 a Peripheral ring with a
pre-crack before the inflation of
daughter cells. Blue region
refers to the peripheral ring and
yellow region refers to the
pre-crack. b Top view of a crack
in the peripheral ring. The crack
length is measured by its central
angle θ = l/r2. The inner and
outer radius of the peripheral
ring before cell inflation is r1
and r2, respectively

while the peripheral ring does not grow as much as the rest
of the cell, which leads to substantial mechanical stresses
developed in the peripheral ring before cell separation. In
this model, we assume that the peripheral ring does not grow
after the septum formation, and the volume growth of the
daughter cell can be depicted by the volume growth ratio
defined as,

η = Vt
V0

(1)

where V0 andVt are the volume of the daughter cell imme-
diately after the septum formation and after the inflation of
daughter cells, respectively. In the experiments (Zhou et al.
2015), it was shown that the volume of the inflated daughter
cells was almost unchanged during the fast crack propagation
in the peripheral ring. Therefore, the loading parameter–
volume growth ratio η is assumed to be unchanged during
the crackpropagation in our following calculations.When the
volume growth ratio is small, the peripheral ring is stressed
without inducing the growth of crack. When η is large, crack
propagates in the peripheral ring and can induce popping
phenomenon observed in the experiments (Zhou et al. 2015,
2016).

2.2 Fracture mechanics modeling of cell separation

Wedevelop a fracturemechanicsmodel to study crackgrowth
in the peripheral ring during S. Aureus daughter cell separa-
tion. Based on the theory of fracture mechanics (Anderson
2017), we calculate energy release rate G associated with
growth of crack in peripheral ring as a function of the vol-
ume growth ratio η. In order to calculate the energy release
rate, we first introduce a pre-crack in the peripheral ring with

length l as shown in Fig. 2. The energy release rate is defined
as:

G = dW (S, η)

dS
(2)

whereW (S, η) is the strain energy stored in the cellular struc-
ture and S is the area of crack surface.

Energy release rate can be regarded as the driving force
for crack growth. The key assumption in fracture mechanics
is when the energy release rate reaches the fracture tough-
ness of the material, a crack begins to grow. Scaling analysis
enables us to write the energy release rate in the following
dimensionless form,

G = μr2 f (θ, η) (3)

where μ is the shear modulus of the material, r2 is the outer
radius of the peripheral ring after the formation of septum
(Fig. 2b). The dimensionless function f (θ , η) needs to be
calculated, and θ is central angle of an arc crack defined as
θ = l/r2 as shown in Fig. 2b.

In this article, we compute the normalized energy release
rate f (θ, η)usingfinite element analysis software,ABAQUS.
To calculate the energy release rate, cracks of different
lengths are introduced in the peripheral ring in the finite ele-
ment models as shown in Fig. 2a. The central angle of a
crack ranges from 0 to 2π. By prescribing the cell volume
growth ratio of the daughter cell, we can numerically com-
pute the energy release rate as a function of the crack length.
We model a prolate ellipsoidal cell discretized in a three-
dimensional hexahedral mesh with approximately 1,300,000
nodes and approximately 250,000 quadratic reduced hexa-
hedral elements (C3D20R). Mesh around the crack tip is
significantly refined. Spatial (grid) convergence has been ver-
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ified by refining mesh. The finite element model is based on
the geometry provided in Fig. 7. The volume growth in each
daughter cell is realized by using “fluid cavity” technique in
ABAQUS. In the simulations, we fill incompressible fluid in
each daughter cell and control the volume growth of each
daughter cell through thermal expansion of the fluid. As a
consequence, we can precisely control the volume growth
ratio of the daughter cell by varying the temperature of the
fluid.

With prescribing both of the crack length and the volume
growth ratio, we conduct the finite element simulations using
ABAQUS/Standard. We assume the contact between the two
daughter cells is frictionless during the cell separation. The
adhesion between the daughter cells is also neglected in the
current study. According to Eq. (3), the energy release rate
can be obtained through computing the difference between
the elastic strain energy of the cell with crack length l and
l + �l, where �l is a small increment of the crack length.
We use a PYTHON script to calculate the energy release rate
with different crack lengths automatically.

3 Results

3.1 Energy release rate during daughter cell
separation

In Fig. 3, we plot the normalized energy release rate f (θ, η)

with respect to the central angle of the crack under different
volume growth ratios ranging from 1.0 to 1.27. The maximal
volume growth ratio, 1.27, corresponds to the one observed
in the experiments with fast crack propagation in the periph-
eral ring (Zhou et al. 2015). As shown in Fig. 3, when the
crack is short, the elastic strain energy stored in the cellu-
lar structure does not change significantly with the change
of the crack length, and energy release rate is small. When
the crack is long, the stress in the peripheral ring is almost
fully relaxed, and the energy release rate is also small. The
energy release rate reaches themaximal valuewhen the crack
is of an intermediate length, which is around π for its central
angle as η varying from 1.0 to 1.27 (Fig. 3). We have also
confirmed that the energy release rate calculated from Eq.
(3) is very close to the number obtained by J-integral around
the crack tip also obtained from finite element simulations
(Fig. 4). It is noted that we calculate the energy release rate
based on quasi-static models by neglecting the inertial effect,
given the fact that the crack propagation speed (∼ 1mm/s)
is much slower than the sound speed.

The maximum normalized energy release rate ( f ∗) only
depends on the cell volume growth ratio. The values of f ∗
can be fitted to the following polynomial function of the cell
volume growth ratio,

Fig. 3 Normalized energy release rate f versus central angle of the
crack θ for different volume growth ratios. For a fixed crack length,
energy release rate increases with the increase in volume growth ratio.
For a fixed volume growth ratio, energy release rate first increases and
then decreases with the increase in crack length. Such non-monotonic
relationship predicts unstable crack growth and crack arrest in the
peripheral ring, which is consistent with the experimental observation
(Zhou et al. 2015). For example, the central angle of the pre-crack in
the peripheral ring is θ1, and the fracture toughness of the ring is given
by the horizontal dash line. When the volume growth ratio reaches
η = 1.27, the crack begins to grow spontaneously till the energy release
rate decreases to the fracture toughness of the ring with the central angle
of the crack θ2. The dependence of maximal normalized energy release
rate f ∗ (marked with triangles) on the volume growth ratio is shown in
the inset.

Fig. 4 Comparison between the energy release rate calculated from Eq.
(3) and the J-integral. Solid lines represent normalized energy release
rate f from Eq. (3). Dash lines represent the normalized J-integral
results

f ∗ = 1.10η2 − 2.15η + 1.05 (4)

where η is in the range of 1.0–1.27. We plot the maximum
normalized energy release rate as a function of the volume
growth ratio in the inset of Fig. 3.When themaximum energy
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Fig. 5 Finite element simulations of the daughter cell separation with
the central angle of the crack in the peripheral ring increased fromπ /18
to 16π /9, for a constant volume growth ratio η = 1.21. a The shape

of the cell. b The shape of one symmetric cross section of the cell. The
color stands for the normalized von Mises stress

release rate is smaller than the fracture toughness of the
peripheral ring, crack growth cannot happen evenwith a large
pre-crack in the peripheral ring.

As observed in the experiments (Touhami et al. 2004;
Zhou et al. 2015), multiple holes can exist in the periph-
eral ring. Single hole or coalescence of several holes can
form pre-cracks in the peripheral ring. With the increase in
volume growth ratio, for a fixed length of pre-crack, energy
release rate increases. Once the energy release rate reaches
the fracture toughness of the peripheral ring, crack begins to
propagate. Considering the small size of a single hole (typi-
cally around 100 nm and much smaller than the radius of the
peripheral ring), the central angle of the pre-crack should be
much smaller than π. Therefore, with a fixed volume growth
ratio, energy release rate first increases with the increase in
crack length and then decreases, as shown in Fig. 3. This
result indicates that once the crack begins to grow, the crack
can grow spontaneously without requiring further increase in
volume growth ratio till the energy release rate decreases to
be equal to the fracture toughness of the peripheral ring again
(Fig. 3). It is noted that in the above discussion, we assume a
constant fracture toughness of the peripheral ring during the
crack propagation. In another word, we assume the R-curve
(Anderson 2017) of the peripheral ring is a step-like function
as shown in the dashed line in Fig. 3. A precise shape of R-
curve is needed to quantitatively predict the unstable crack
growth phenomenon.

For a given volume growth ratio, crack growth can be
arrested when the energy release rate decreases to the frac-
ture toughness of the peripheral ring with large crack length,

which is consistent with the observation of a remained hinge
connecting two daughter cells after the popping event. In
Fig. 5, we plot the FEM simulations of the shape of separated
daughter cells with different crack lengths under the volume
growth ratio η = 1.21. The three-dimensional deformation
and stress distribution during the daughter cell separation are
shown in Fig. 5a. With the increase in the crack length, the
septa bulge out of plane, contact with each other and push the
two daughter cells away from each other. Stress is concen-
trated near the crack tip. In Fig. 5b, we show the shapes of one
symmetric cross section of daughter cells. When the crack
length is small, the outer wall of the cells is under high turgor
pressure. As the crack length increases, the deformation in
the septum increases and pushes the two daughter cells away
from each other.

3.2 Pre-stretch analysis

In the previous analysis, the peripheral ring is assumed to be
stress-free before the volume growth of the daughter cells.
However, as shown in the experiments (Zhou et al. 2015), the
peripheral ring can be stretched in the circumferential direc-
tion tomatch the size of the cell during the septum formation.
Therefore, we next investigate the effect of the pre-stretch
in the peripheral ring on the crack growth. We assume the
peripheral ring is pre-stretched in the hoop direction before
the inflation of daughter cells. Based on the Neo-Hookean
model, the hoop stress σθθ can be calculated as,
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Fig. 6 Normalized energy release rate versus central angle of the crack
for different pre-stretches in the hoop direction of the peripheral ring,
with the volume growth ratio η = 1.21

σθθ = μ
(
λ2θ − 1/λθ

)
(5)

The pre-stretch in the hoop direction λθ has been reported
to be between 1 and 1.1 in the experiments (Zhou et al. 2015).
In the simulation, we set the pre-stretch in the hoop direction
to be 1, 1.05 and 1.1. By incorporating corresponding initial
stresses in the peripheral ring into the finite element simula-
tions, we obtain the energy release rate associated with crack
growth with a volume growth ratio of η = 1.21, as shown
in Fig. 6. The existence of the pre-stretch does not change
the shape of the function of the energy release rate too much,
though it can cause small quantitative changes; for example,
for the case shown in Fig. 6, such quantitative changes are
within 5%. Therefore, we conclude that the pre-stretch in
the peripheral ring may not be critical for the popping event
during daughter cell separation.

4 Conclusion

In this article, we develop a fracture mechanics model to
explain recent experimental observation of the popping event
during division of S. Aureus cell. We show that the energy
release rate associated with the crack growth in the periph-
eral ring depends on the crack length in a non-monotonic
way. When the crack is short, the energy release rate is small
and increases with the crack length. The energy release rate
reaches a maximum value for the crack of an intermediate
length and decreases with further increase of crack length.
Such a non-monotonic relationship between energy release
rate and crack length can be readily used to explain the
unstable and fast crack growth as well as crack arrest in the
peripheral ring reported in the recent experiments. The frac-

ture mechanics model developed in the article to explain the
crack propagation-driven popping event in S. Aureus daugh-
ter cell separation can be easily generalized to understand
other popping events driven by crack propagation, such as
those observed in various plants and fungi mentioned at the
beginning of the article. At last, we are thankful to one of the
anonymous reviewers for pointing out that the cohesive zone
model (Gao andGao2016; Liu andGao2015)maybe a better
choice for quantitative understanding fracture phenomena in
cells. We believe the elastic fracture mechanics model devel-
oped in this article provides a mechanism which links the
“popping” event of the cell and unstable crack growth in the
peripheral ring.
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Appendix: Geometry and material parame-
ters

Figure 7 shows the geometry of the model of a quarter of a
cell directly obtained from previous study (Zhou et al. 2015).

Fig. 7 Geometry of the mechanics model of a quarter of a cell
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Table 1 Material and geometrical parameters used in the mechanics model

Parameter Description Value (dimensionless) Rationale

Material parameters

E Young’s modulus 1 Non-dimensionalization

ν Poisson ratio 0.49 Incompressible material

μ Shear modulus 0.3356 μ = E
2(1+ν)

C10 Neo-Hookean parameter 0.1678 C10 = E
4(1+ν)

D1 Neo-Hookean parameter 0.12 D1 = 6(1−2ν)
E

Geometrical parameters

H1 Height of the septum 0.0342 Non-dimensionalization

H2 Inner length of major axis of the cell 1.4265 Non-dimensionalization

H3 Outer length of major axis of the cell 1.4835 Non-dimensionalization

H4 Height of the ring 0.033 Non-dimensionalization

R∗
0 Radius of the ring (before septum formation) 1 Non-dimensionalization

r1 Inner radius of the ring (after septum formation) 1.071 Non-dimensionalization

r2 Outer radius of the ring (after septum formation) 1.15 Non-dimensionalization

t Thickness of the ring (after septum formation) 0.079 t = r2 − r1

∗R0 is the radius of the peripheral ring before the septum formation, which is not shown in Fig. 7 and is adopted to normalize the other length scales
in the cell

Table 1 includes all geometrical andmaterial parameters used
in simulations.
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