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Biological swimmers often exhibit rich physics due to the hydrodynamic coupling between 
the fluid flow and the immersed deforming body. Complexity and nonlinearity of their 
behaviors have imposed significant challenges in design and analysis of robots that mimick 
biological swimming motions. Inspired by the recent experimental studies of soft robotic 
swimmers, we develop a fictitious domain/active strain method to numerically study the 
swimming motion of thin, light-weight robots composed of smart materials that can 
actively undergo reversible large deformations (e.g., liquid crystal elastomer). We assume 
the elastic material to be neo-Hookean, and behave like an artificial “muscle” which, when 
stimulated, generates a principal stretch of contraction. We adopt an active strain approach 
to impose contractive strains to drive elastic deformation following a multiplicative 
decomposition of the deformation gradient tensor. The hydrodynamic coupling between 
the fluid and the solid is then resolved by using the fictitious domain method where 
the induced flow field is virtually extended into the solid domain. Pseudo body forces 
are employed to enforce the interior fictitious fluid motion to be the same as the solid 
structure dynamics. Using the fictitious domain/active strain method, we perform a series 
of numerical explorations for soft robotic swimmers with both 2D and 3D geometries. We 
demonstrate that these robot prototypes can effectively perform undulatory swimming and 
jet-propulsion when active strains are appropriately distributed on the elastica.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Soft robotics is an emerging area that draws extensive interests from core areas in materials science and engineering, 
human health and medicine, applied mathematics, and biomechanics. Largely inspired by the existing biological systems, it 
stimulates new structural design, and has advantages of simple control, light-weight, miniaturization, and affordable rapid 
fabrication [1–4]. Compared to the conventional robots that are often made of rigid parts, the soft robots that are made 
from deformable materials can undergo flexible deformation under actuation, which essentially permits infinite degrees of 
freedom to facilitate complicated operations. The examples include synthetic stimuli-responsive materials such as hydrogel, 
shape memory polymers (SMPs), electroactive polymers (EAPs), liquid crystal elastomers (LCEs), polymeric nanocomposites, 
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together with biological tissues such as rat muscle tissue [5]. These so-called smart materials have attracted growing at-
tention because of the intriguing shape or volume recovery properties under different external stimuli, such as electric, 
magnetic, thermal, chemical, light and pneumatic [6–11].

Designing soft swimming robots that undergo active deformations in a fluid is considerably challenging. First of all, fast 
swimming motions are typically resultant from a significant amount of momentum exchange between the fluid and solid 
structures to overcome viscous drag force in the fluid, which require robots to generate rapid and stable structural defor-
mations reversibly. Meanwhile, efficient locomotion of a deformable object requires the employment of specific swimming 
patterns (or swimming gaits) to take advantage of thrust forces from the resultant fluid drag and wake structures behind 
[12], which is critical especially in the small or finite Reynolds number regime where the viscous effect is important [13]. 
To take all the factors into account, the dynamical performances of soft robots with various geometries, material properties, 
as well as the imposed active control schemes, need to be determined jointly with the induced fluid motions. In addition, 
dynamic instabilities may occur when light-weight structures move in fluid [14,15], which adds complexities in under-
standing the control mechanisms of how soft robots perform a stable swimming motion. In general, while various different 
types of soft robots have been manufactured and tested, it is desired to understand their precise swimming mechanisms, 
which requires the combination of experimental studies with accurate modeling and simulations in design, analysis, and 
optimization.

In the past decades, numerous computational methods have been developed to simulate interactions between fluid 
and moving elastic objects. One example is the so-called boundary conforming method, such as the Arbitrary Lagrangian–
Eulerian (ALE) finite element method [16,17] and the space–time finite element method [18]. In these methods, the 
governing equations of both the fluid and solid phases are solved on one set of mesh that is adapted to the deforming 
solid objects or geometric boundaries. Although the sharp-interface methods can accurately resolve the complex geometries 
of moving boundaries, the computation cost is high, especially in 3D. This is because for the strongly coupled fluid–elastic 
system, additional subiterations between the fluid and solid solvers are necessary in order to achieve better convergence 
[19,20]. Moreover, frequent re-meshing might be necessary in order to follow boundary movement. When the moving-mesh 
technique is employed (e.g., ALE method), the associated mesh velocities have to be solved as additional unknowns together 
with the variables in the fluid and solid phases [16,17]. In addition, unstructured meshes (e.g., triangular, quadrilateral, etc.) 
are often employed in these methods, which adds complexities in parallelization.

Instead of employing body-fitted meshes, the so-called Cartesian grid methods typically use either separate or non-
boundary fitted meshes. This approach simplifies the initial mesh generation and avoids the need for moving and/or 
adaptive meshing to resolve the changing interface which reduces the overall cost and complexity. For example, the im-
mersed boundary method employs overlaid Eulerian and Lagrangian meshes to solve fluid/elastic structure interactions: The 
Navier–Stokes (N-S) equations are solved on a fixed Eulerian mesh; while the embedded boundaries are tracked by a set of 
freely moving Lagrangian points. To account for the no-slip conditions at fluid–solid interfaces, appropriate forcing density 
terms are added to the N-S equations by using proper interpolations between the solution variables at the fixed grid points 
in the vicinity of the moving boundary and the nearest Lagrangian points [21–26]. Instead of solving the N-S equations 
in the fluid phase, both the particle-based methods (e.g., Smoothed Particle Hydrodynamics (SPH) method [27]) and the 
kinetic methods (e.g., Lattice Boltzmann method (LBM) [28–32]) can be flexibly combined with the immersed boundary 
method to handle complex geometries, and has become more and more popular in dealing with fluid–structure interactions 
(FSI).

Inspired by the recent experimental designs [5,33], in this work we numerically study the swimming motion of soft 
robotic swimmers that perform large reversible elastic deformations driven by the imposed actuation. We assume that the 
elastic material is hyper-elastic, and can be described by the neo-Hookean constitutive relation that permits finite/large 
nonlinear deformations. To model the muscle-like behaviors, we adopt an active strain model to distribute contracting 
strains on soft elastica, which is then coupled with the fictitious domain (FD) method [34,35] to resolve the FSIs. The central 
idea of the active strain model is based on the multiplicative decomposition where the (total) deformation gradient tensor 
is split into two parts that represent the sequential contributions from the imposed contractions and the elastic response 
of the material [36,37]. It is different from the so-called active stress approaches where an additional stress term (different 
from applied mechanical stress) is introduced into the material model [38]. By appropriately applying contracting strains 
on elastic plates of different (e.g., square, circular, or bell-like) shapes and rigidities, we show that soft robot prototypes 
of simple geometries can effectively perform undulatory or jet-propulsion swimming motions. The paper is organized as 
follows. Section 2 is dedicated to the mathematical model of the active strain approach, as well as its implementation in the 
FD framework. The numerical simulation results of a 2D beam (undulation) and 3D plates (undulation and jet propulsion) 
with various geometries are presented in Section 3. Discussions and conclusions are made in Section 4.

2. Mathematical model and numerical method

2.1. Active strain model

To begin with, we seek mathematical models that describe the nonlinear mechanics of soft actuating material. Generally 
speaking, there are typically two different ways of modelling soft actuating material or so-called artificial muscle. One way 
is decomposing the total deformation of the material into two parts: elastic deformation caused by mechanical stress and 
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active deformation/strain caused by other stimuli such as light, electric field, thermal field etc. For example, deformation of 
hydrogel can be decomposed to the elastic part and swelling part [39]; deformation of liquid crystal elastomer can also be 
decomposed to the elastic strain and stimuli-induced strain. In experiments, active strain can be easily measured. Without 
any mechanical load, deformation of a free-standing soft material can be measured as a function of the intensity of external 
stimuli [40]. Here we employ an active strain approach which applies principal contractions in a manner similar to artificial 
muscle. To apply actuation the deformation gradient tensor F is decomposed into an active deformation tensor Fa and an 
elastic deformation tensor Fe following multiplicative decomposition [36,37] such that

F = Fe · Fa. (1)

Here Fa is effectively an arbitrary function applied to the reference configuration that can be designed in terms of the 
desired location, direction, sign and strength. For incompressible solids that are considered here, we apply an incom-
pressible restriction on actuation such that det(F) = 1. For simplicity Fa can be defined in the principal coordinates and 
transformed to the desired orientation by a standard solid body rotation coordinate transformation. For an artificial muscle 
that contracts uniaxially when activated, we define Fa = diag[λ1, λ2, λ3] where λ1 < 1 represents a principal stretch, and 
λ2 = λ3 =

√
λ−1

1 > 1 are the correspondingly strains in the other two directions. With total F being mapped appropriately, 
the resultant elastic stress can be calculated through the constitutive relation τ = τ (Fe) = τ

(
F · F−1

a

)
for various different 

kinds of materials (hyperelastic, viscoelastic, composite, etc.). In this study, we assume the active strain tensor to be either 
a constant or time-dependent. Nevertheless, it is important to mention that the active strain of real muscle can also depend 
on its loading condition. Therefore, to better characterize the behaviors of artificial muscles (e.g., electroactive polymer or 
liquid crystal elastomer) under actuation, systematic experimental measurements are required to obtain the relationship 
between the active strain tensor and the imposed loading conditions.

Alternatively, another widely used approach is the active stress method where the total stress is decomposed into a 
mechanical part and an active part, and both of which can induce deformation. For instance, Maxwell stress is usually 
introduced in the constitutive models of dielectric elastomer [41]. In many cases, the above two methods are mathematically 
identical, due to the fact that the active deformation introduced here is a first order approximation of nonlinear elasticity, 
and is independent of mechanical stress. There are also other approaches to implement (soft) actuation without using 
stress or strain decompositions. For example, to mimick swimming motions of slender flexible swimmers such as sperms 
or nematodes using the immersed boundary method, active forces are directly added to the right-hand-side of the N-S 
equation by taking the variational derivative of the discrete elastic energy that is constructed based on the targeted local 
stretches and curvatures [42,43].

2.2. Fictitious domain method

2.2.1. Formulation
To resolve the FSI of soft robotic swimmers, we implement the above active strain model in a fictitious domain (FD) 

method proposed by Yu [34], who extended the FD formulation of Glowinski et al. [44] for the rigid particles to the case 
of flexible bodies. The key idea of the FD method is that the interior of the solid is assumed to be filled with a fictitious 
fluid that is constrained to move at the same velocity with the solid by a pseudo body force (i.e. Lagrange multiplier). 
The advantage of the FD method is that the flow fields can be solved efficiently with a fixed Cartesian grid. The reader is 
referred to [34] for the details on the derivation of the FD formulation and the numerical schemes.

In the following, we briefly introduce the formulation and the numerical schemes of the FD method. Suppose that a 
deformable body of density ρs is immersed in the incompressible Newtonian fluid of viscosity μ and density ρ f . Let �
denote the entire computational domain containing both solid and fluid domains, and P (t) represent the solid domain. It 
is noted that tracking swimming objects in the fixed coordinates requires using a very large computational domain, which 
makes computation very expensive especially in 3D. Alternatively, here we employ an instantaneous inertial frame � that 
co-moves with the swimmer at a certain reference speed U [45]. Then the dimensionless FD governing equations in weak 
form for the incompressible Newtonian fluid in the co-moving relative references as

∫
�

(
∂u f

∂t
+ û f · ∇u f

)
· v f dx +

∫
�

(
−pI + 1

Re
(∇u f )

T

)
: ∇v f dx =

∫
P

λ · v f dx, (2)

∫
�

q∇ · u f dx = 0, (3)

where û f = u f − U. The dimensionless governing equations for neo-Hookean solid material (τ = G(B − I)) are solved in the 
absolute references as
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∫
P

[
(ρr − 1)

(
dus

dt
− F r

g

g

)]
· vsdx +

∫
P

(∇vs)
T : [λ0 ln J I + G(B − I)]dx

−
∫
P

(∇vs)
T :

(
−pI + 1

Re
[∇u f + (∇u f )

T ]
)

dx = −
∫
P

λ · vsdx, (4)

∫
P

(u f − us) · ζdx = 0 (5)

Equations (2)–(5) represent the fluid momentum equation, the fluid continuity equation, the solid momentum equation, and 
the velocity constraint in the solid domain, respectively. In these equations, u f is the fluid velocity, us the solid velocity, 
p the fluid pressure, and λ the pseudo body-force (i.e., the Lagrange multiplier). v f , vs , q and ζ are the corresponding 
variations, respectively. For the original FD method for the passive deformation model, B = F · FT is the left Cauchy–Green 
deformation tensor, here F being the deformation gradient tensor defined as: F = ∂x/∂X, in which x and X are the solid 
current and reference configurations, respectively. J is the determinant of F, and J = 1 for the incompressible solid. In 
contrast, for the active strain model studied, B = Fe · FT

e = (F · F−1
a ) · (F · F−1

a )T , where Fe is the elastic deformation tensor 
which causes the elastic stress, and Fa is an input deformation tensor without generating elastic stress. Also g denotes the 
gravitational acceleration. The following characteristic scales are used for the non-dimensionlization scheme: Lc for length, 
Uc for velocity, Lc/Uc for time, ρ f U 2

c for pressure p, and ρ f U 2
c /Lc for Lagrange multiplier λ. The following dimensionless 

control parameters are also introduced:

Density ratio : ρr = ρs

ρ f

Material parameters : λ0 = λ0

ρ f U 2
c
, G = G

ρ f U 2
c

Reynolds number : Re = ρ f Uc Lc

μ

Froude number : F r = gLc

U 2
c

(6)

where g is the gravity constant, λ0 is related to the compressibility property of the material and G represents the shear 
modulus. It should be mentioned that for robotic swimmers, the characteristic velocity is defined as Uc = fc Lc where a 
reference actuation frequency is chosen as fc = 1 Hz. In addition, in order to enforce the incompressibility constraint of 
the solid material, i.e., J = 1, we impose a penalty function-like approximation by setting a large enough value for λ0
(104 ∼ 105).

2.2.2. Numerical scheme
The problem (2)–(5) is decomposed into fluid, solid and Lagrange-multiplier sub-problems in a partitioned coupling 

manner as follows [34]:

1. Fluid sub-problem (for u∗
f and p)

∫
�

(
u∗

f − un
f

�t
+ 1

2
(3ûn

f · ∇un
f − ûn−1

f · ∇un−1
f )

)
· v f dx

+
∫
�

(
−pI + (∇u∗

f )
T + (∇un

f )
T

2Re

)
: ∇v f dx =

∫
Pn

λn · v f dxn, (7)

∫
�

q∇ · u∗
f dx = 0, (8)

where the vector Lagrange multiplier λ serves as a pseudo body force, and needs to be interpolated from the Lagrangian 
mesh via a Dirac delta function δ via:

λn(x) =
∫

n

λn(X)δ(x − X)dX. (9)
P
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In the above the Eulerian and the Lagrangian mesh are denoted by x and X, respectively. We approximate the delta 
function as a tri-linear function to transfer the quantities between the unstructured Lagrangian mesh and the uniform 
Eulerian mesh (with grid size �x = �y = �z) [22]

δ(x − X) = 1

�x3
φ(

x − X

�x
)φ(

y − Y

�x
)φ(

z − Z

�x
). (10)

φ(r) =
{

1 − |r| |r| ≤1

0 |r| >1
. (11)

This sub-problem is essentially the solution of the N-S equation. An efficient finite-difference-based projection method 
on a homogeneous half-staggered grid is employed [46]. All spatial derivatives are discretized with the second-order 
central difference scheme. Here we choose the reference speed U as the swimmer’s COM speed at previous time step, 
and the computational domain position x is updated at the end of the fluid sub-problem step as

xn+1 = xn + U�t. (12)

2. Solid sub-problem (for xn+1)∫
Po

ρrxn+1

�t2
· vsdX +

∫
P0

(∇0vs)
T :

[
λ0 ln J F−1 + G(F−1

a (F−1
a )T FT − F−1)

]n+1
dX

=
∫
P0

[
ρrxn

�t2
+ u∗

f (xn)

�t
+ (ρr − 1)

(
xn − xn−1

�t2
+ F r

g

g

)]
· vsdX

+
∫
P0

(∇0vs)
T :

[
(Fn)−1 · σ ∗

f (xn)
]

dX −
∫
Pn

λn · vsdxn, (13)

where σ ∗
f (xn) denotes the viscous stress of the fictitious fluid inside the solid domain. The velocity field u∗

f is interpo-
lated from the Eulerian mesh via

u∗
f (X) =

∫
�

u∗
f (x)δ(x − X)dx. (14)

This sub-problem has been re-formulated to enhance the computational robustness at ρr = 1 without sacrificing accu-
racy [34]. A Lagrangian finite element method is used for the solution of this problem. We use the eight-node brick 
element (i.e., tri-linear interpolant) for the spatial discretization of the solid configuration and the Lagrange multiplier. 
In equation (13), the penalty function term (involving the material expansion modulus) is integrated using Gaussian 
rule with only one Gaussian point, and all other terms except the Lagrange multiplier term are integrated with 8 Gaus-
sian points (2 × 2 × 2). The Lagrange multiplier term is integrated using the trapezoidal rule. The resulting non-linear 
algebraic equations are solved with Newton iterations and the linearized equations in each iteration are solved with the 
conjugate gradient iterative method. Note that Fa is a function of the reference configuration and time, and is indepen-
dent of the current configuration, thus it is not more difficult to derive the Jacobian matrix for the active strain model 
compared to the original passive deformation model.

3. Lagrange multiplier sub-problem (for un+1
f and λn+1)

∫
�

(
un+1

f − u∗
f

�t

)
· v f dx =

∫
Pn

(λn+1 − λn) · v f dxn, (15)

∫
Pn

(
un+1

f − xn+1 − xn

�t

)
· ζdxn = 0. (16)

This sub-problem is solved with the direct-forcing scheme [46,47], instead of the original Uzawa iterations [34]. It has 
been shown that two schemes produced the same results [47].

2.2.3. Validation
Considering that no benchmark problem for the active strain model is available and the original FD method for the 

passive deformation model has not been validated with quantitative comparisons, we verify the FD method with two 
benchmark problems: i) flow-induced vibration of a flexible 2D beam that is attached to the downstream side of a sta-
tionary cylinder, and ii) flow-induced flapping motion of a 3D flag.



Z. Lin et al. / Journal of Computational Physics 376 (2019) 1138–1155 1143
Fig. 1. Time evolution of the displacements in both x- and y-directions of the central point on the plate trailing edge (point A, see inset of (a)) of a thin 
flexible plate in uniform flow.

Table 1
The amplitude of the central point on the free end and the Strouhal number and the 
average drag coefficient for a flexible beam.

Works Amplitude Strouhal number Drag coefficient

Turek and Hron (2006) [48] 0.83 0.19 4.13
Tian et al. (2014) [26] 0.78 0.19 4.11
Present 0.81 0.19 4.10

We first consider the case of a 2D flow past a flexible beam that is attached to a rigid cylinder; see inset in Fig. 1(a). 
The cylinder has a diameter D , and the attached beam has a length L = 3.5D and a thickness h = 0.2D . The fluid domain 
is Lx × L y = 11D × 4.1D We impose are no-slip conditions on the top and bottom, and a far-field condition (i.e., ∂u/∂x =
∂ p/∂x = 0) on the right boundaries of the computational domain. On the left boundary, we specify a parabolic velocity 
profile with an average velocity U0 as: U (y) = 6U0 y(L y − y)/L2

y . In this case, we choose Re = 100 by choosing the velocity 
scale Uc = U0. For elastic material, its rigidity is chosen as E∗ = E/(ρ f U 2

0) = 1400. The density ratio between the solid 
and the fluid phase is chosen as ρs/ρ f = 10. The fluid mesh is discretized into uniform grids in both directions with a 
resolution of 1024 × 256, while the solid domain is discretized into brick elements with a resolution of 210 × 12. The 
time step is chosen as �t = 0.002. The time-varying displacements in both directions of the central point on the free end 
of the beam (point A) is shown in Fig. 1, and is in an excellent agreement with the previous studies. The amplitudes of 
the y-coordinate of the free end, the Strouhal number and the average drag coefficient (Cd = 〈Fx〉/ 

( 1
2 ρ f U 2

0 D
)
) are also 

summarized in Table 1.
We then consider the second case of a 3D flexible plate of size (L, h, W ) = (1, 0.01, 1) in a uniform flow whose leading 

edge is clamped (h is the plate thickness). The computational domain is rectangular, and its streamwise, transverse and 
spanwise directions are denoted by X, Y, and Z, respectively. Currently the domain size is chosen as (Lx, L y, Lz) = (8L, 8L, 2L)

based on the plate length L. The uniform velocity U0 is imposed on the inlet, top and bottom boundaries, respectively. 
The far-field and periodic conditions are imposed on the outlet and the spanwise direction, respectively. The fluid mesh 
resolution is 512 × 512 × 128, the number of the solid elements is 80 × 4 × 80, and the time step is �t = 0.001. Here we 
choose Re to be 200, the mass ratio ρsh/ 

(
ρ f L

)
to be 1.0, the dimensionless bending rigidity Eh3/[12(1 − ν2

s )ρ f U 2
0 L3] to 

be 0.0001. The Young’s modulus is computed correspondingly for the given plate size and the Poisson’s ratio (νs = 0.4), and 
then the shear and volume moduli can be obtained via the relationships G = E/[2(1 + νs)] and λ0 = E/[3(1 − 2νs)]. Again, 
in Fig. 2 and Table 2, our results of both tip displacement and time-averaged drag coefficients show good agreements with 
the previous studies by Huang and Sung [49], and by Tian et al. [26]. In addition, we have examined the impacts of different 
interpolating functions on numerical accuracy by choosing either the tri-linear or the smoothed 2-point function [50],

φ(r) =

⎧⎪⎨
⎪⎩

3/4 − r2 |r| ≤0.5

9/8 − 3|r|/2 + r2/2 0.5< |r| ≤1.5

0 1.5< |r|
, (17)

and found that they indeed yield very similar results.
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Fig. 2. Time evolution of the transverse displacement of the central point on the plate trailing edge of a thin flexible plate in uniform flow.

Table 2
The amplitude of the central point on the plate trailing edge and the Strouhal number and the 
average drag coefficient for a flag flapping in uniform flow.

Works Amplitude Strouhal number Drag coefficient

Huang and Sung (2010) [49] 0.780 0.260
Tian et al. (2014) [26] 0.806 0.266 0.543
Present (tri-linear function) 0.762 0.266 0.579
Present (smoothed 2-point function) 0.760 0.260 0.586

3. Numerical results

Note that slender swimmers (e.g., fish and jellyfish) not only adopt some unique shapes to enhance thrust generation 
but also distribute muscle inhomogeneously across their thin body to facilitate generation of desired deformation. Therefore, 
in order for soft robots to achieve effective swimming motions, it is critical to design appropriate swimming strategies (i.e. 
swimming gaits) by taking into account their geometrical characteristics, material properties, and deformation generation 
due to the applied active strains. In the following, we show a few successful designs of soft robotic swimmer prototypes 
that undergo undulatory swimming and jet propulsion by applying active (contracting) strains on different locations of thin 
elastic plates with different shapes. To seek certain optimized swimming strategies, we systematically explore the param-
eter spaces by performing direct simulations to resolve the nonlinear fluid/elastic–structure interactions at the moderate 
Reynolds numbers regime where both the viscous and the inertia forces are important. In all simulations, we fix the density 
ratio ρr = 1 for light-weight structures in both 2D and 3D.

3.1. Two-dimensional case

We begin by manipulating a 2D beam of length L = 1 and a uniform thickness h = 0.03 as shown in Fig. 3(a). Here we 
consider undulatory motion for slender biological swimmers that perform forward locomotion by generating wavy defor-
mations to produce thrust force. As suggested by the simulation results that use the immersed boundary method [51,52], 
following the classical Hill muscle model by distributing three-element spring units on the top and bottom surfaces can 
effectively generate oscillating-switching bending deformations which resemble undulatory swimming motions. Without us-
ing complicated models to mimic the biological tissues’ mechanical properties (e.g., viscoelasticity, electrophysiology effects 
[53]), we assume the soft active material is hyperelastic which, at the microscopic level, is driven by a contracting element 
with a length l and an initial length l0, yielding an effective contractile strain λa = l

l0
= 1 − λ0 locally. It connects with a 

neo-Hookean spring that generate elastic stresses in response to the active input of the contraction field which, in 2D, is 
simply chosen as a homogeneous field Fa = diag

(
λa, λ

−1
a

)
applied on the active segment δ.

We follow the geometry adopted by Hamlet et al. [51] by choosing the first 10% of body length from the left to be 
passive, and then connecting an active section of length δ. To activate the beam, as shown in panel (b), we apply the 
constant (λa ∼ 1 − α) or time-dependent (e.g., sinusoidal λa ∼ 1 − α sin

(
2π
T t

)
) contractile strain field alternatively on the 

both sides within a time period T . Here α is an amplitude which characterizes the contraction strength. In the meantime, 
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Fig. 3. (a) Schematic of a 2D beam under contracting actuation. The active segment is highlighted in orange. The microscopic mechanical model of the 
active contraction is illustrated by the zoom-in schematic on bottom. (b) Either a constant (i.e., a step-like) or a sinusoidal contraction is applied during the 
first half period 0 ≤ t < T /2 on the two surfaces alternatively. Then the actuation is turned off for the second half T /2 ≤ t < T . (c) Convergence study for 
the 2D beam under a sinusoidal actuation by varying domain size, mesh resolution, and time step. The other parameters are Re = 500, G = 1000, δ = 0.4, 
α = 0.15, and T = 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the maximum strain is imposed on the surface with an exponential decay in the thickness direction. Mathematically, it is 
convenient to define λa for a constant actuation as

λa =
⎧⎨
⎩

1 − α exp
(
−h−y

d0

)
, 0 ≤ t ≤ T/2

1 − α exp
(
− y

d0

)
, T/2 < t ≤ T.

(18)

Or,

λa =
⎧⎨
⎩

1 − α sin( 2πt
T )exp

(
−h−y

d0

)
, 0 ≤ t ≤ T/2,

1 − α sin( 2πt
T )exp

(
− y

d0

)
, T/2 < t ≤ T

(19)

for a sinusoidal actuation. In the above, d0 controls the steepness of the decay, and is chosen as h/3 in all simulations 
in both 2D and 3D. Typical resultant bending deformations are illustrated in Fig. 3(a) by a few snapshots of the midline 
position (grey dashed lines). As shown in Fig. 3(c), we have performed a convergence study for the swimming beam under 
a sinusoidal actuation by varying domain size, mesh resolution, and time step. In the following simulations, we have chosen 
the Eulerian domain to be Lx × L y = 16 × 2, which is uniformly partitioned in the x–y plane with the grid size �x = 1/256. 
The solid domain is partitioned by using rectangular brick elements with the resolution 160 × 8 so that the area ratio of 
the Eulerian element to the Lagrangian element is about 1.5 [34].

In Fig. 4, we compare the swimming motions due to different actuation methods (also see movie S1) when choosing 
Re = 500, G = 1000, δ = 0.4, α = 0.15, and T = 2. Panel (a) shows the magnitude of the instantaneous velocity, i.e., |u|, 
of the center-of-mass (COM) positions. The spikes suggest sudden changes in the swimming speed due to the way that 
the actuation abruptly switches between the constant actuation applied two surfaces, while the velocity varies smoothly 
when the two sides are under a periodic sinusoidal actuation. When projecting the velocity on its swimming direction, 
the two actuation methods result in approximately the same time-averaged swimming speed 〈U 〉 ≈ 0.13. In panel (b), 
we calculate the instantaneous elastic strain energy E(t) = ∫

P wdV where w = 1
2 Gtr

(
Fe · FT

e − I
)

is the energy density for 
incompressible materials in terms of the first invariant of the elastic stress tensor [54]. Apparently the sinusoidal actuation 
requires much gentler elastic deformations compared to the constant one. The snapshots in panels (c) and (d) highlight 
the drastic differences of the wake structures generated the differing actuation schemes as characterized by the envelop 
trajectories of the midline (see Inset of panel (b)). As highlighted by the black solid lines in the inset of (b), the beam 
exhibits larger deformations under a constant actuation. A pair of vortices of opposite sign is generated during each tail 
upward/downward beating, leading to two vortex streets that are widely separated; see panel (c). In comparison, a sinusoidal 
actuation yields a smooth swimming motion, shedding vorticies to form a reverse von Kármán vortex street.

Next, we examine the Reynolds number effect by simulating the swimming motions under a sinusoidal actuation when 
choosing computational parameters δ = 0.4, α = 0.15, T = 1, G = 1000 at Re = 100,500 respectively. As shown in Fig. 5(a), 
the swimming plate moves faster as inertia increases even if the elastic deformations at the two Reynolds numbers are 
similar as shown in panel (b). Panel (c) suggests that at Re = 100, the viscous effect still dominates without significant 
flow separation and vorticity generation. The undulating deformation is useful to overcome the viscous effect by taking 
advantage of the anisotropic drag forces exerted upon the beam. As shown in panel (d), apparently the inertial effect at 
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Fig. 4. Swimming motions of a 2D elastic beam under the constant and sinusoidal actuation when fixing Re = 500 and T = 2.0. (a) Instantaneous velocity 
as a function time. (b) Strain energy E as a function of time. Inset in (b): Envelope trajectories of the plate midline during one actuation period. Snapshots 
of the corresponding vorticity fields are shown in panels (c) (constant) and (d) (sinusoidal).

Fig. 5. Comparisons of the free swimming motion of a 2D elastic beam at Re = 100 and Re = 500 when fixing T = 1.0 for sinusoidal actuation following 
Eq. (19). (a) Instantaneous velocities as a function time. (b) Mean elastic energy densities e as a function of time. Inset in (b): Envelope trajectories of 
the plate midline during one actuation period. Snapshots of the corresponding vorticity fields are shown in panels (c) at Re = 100 and (d) at Re = 500, 
respectively.

Re = 500 enhances the momentum exchange to generate a reverse von Kármán vortex street, which effectively generates 
thrust forces to propel the swimmer.

After choosing a particular actuation method (e.g., sinusoidal), we may study the 2D undulating swimming motion by 
systematically exploring the parameter space of (Re,α, T , G, δ). Since simultaneously optimizing all these parameters can be 
very challenging, here we examine the differences of the 2D swimming motions by varying individual parameters. As shown 
in Fig. 6(a)–(c), we vary parameter T , G , or δ individually to seek the fastest moving speed 〈U 〉 and maximum swimming 
efficiency. In panel (a), such motion occurs when T ≈ 1.3 and the other parameters are fixed. Asymmetric and non-periodic 
undulations have been observed when actuation is either very fast (T < 0.5) or slow (T > 2.5), which barely generates 
a directional motion. In panel (b), when varying G only, the corresponding fastest swimming motion occurs at G ≈ 900. 
Interestingly, we have observed that at small G (i.e., G < 200), while swimming slowly, the beam in fact can move back 
and forth as actuation switches sides during one period. When G becomes larger, the beam exhibits a directional motion 
with its COM velocity sharply increasing before saturating around U = 0.13 at G > 500. In panel (c), the maximum speed 
occurs when approximately half of the body is actuated. As δ goes beyond 0.6, we have again observed that non-periodic 
and asymmetric swimming motions.

In panels (d–f) we estimate the power done by the beam upon the fluid as [55]

P = 1

2

d

dt

∫
� f

|u f |2dV + 2

Re

∫
� f

|∇u f |2dV , (20)

based on which we define the swimming efficiency as

η = Ek

E f + Ek
, (21)

where Ek = 1
2 M f 〈U 〉2 is the kinetic energy of the elastic beam, and E f = ∫ T

0 Pdt represents the total energy delivered to 
the fluid due to the mechanical work performed by the swimming motion. We have found that P varies approximately 
monotonically with the varying parameters, leading to the maximum efficiencies around T = 1.1, G = 400 and δ = 0.3, 
respectively.
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Fig. 6. Measurements of the averaged swimming speed 〈U 〉 in (a–c), and power P (solid blue lines) and efficiency η (dashed blue lines) in (d–f) of an 
swimming beam under a sinusoidal actuation following Eq. (19) when fixing Re = 500, α = 0.15, and varying T , G and δ, respectively.

Fig. 7. (a) Examples of different actuation patterns (horizontal vs. diagonal) on the top surface of a square plate, and the corresponding bending deformations 
in (b) and (c).

3.2. Three-dimensional cases

3.2.1. Deformation control
In 3D, the active strain field can be defined as Fa = diag (λ1, λ2, λ3), defined in the principal coordinates in the un-

deformed configuration. We align λ1 = λa < 1 with the local contracting direction while defining the remaining principal 
stretches as λ2 = λ3 = λ

−1/2
a . This assumes that the deformation is homogeneous in the directions of λ2 and λ3. However, 

design and control of elastic deformations in 3D can prove to be much more complicated than in 2D, especially when deal-
ing with complex geometries. As demonstrated in Fig. 7(a)–(c) for a rectangular plate, the resultant bending deformation 
can be adjusted by distributing the constant contracting field of λ1 along arbitrary directions (e.g., horizontal in (b) and 
diagonal in (c)) in the un-deformed configuration.

Another example is shown in Fig. 8, where we change the plate shape from rectangular to circular, and apply a constant 
actuation in either the radial or the azimuthal direction. Apparently, when radially activated (i.e., λaer , see panel (a)), the 
plate apparently experiences a two-step deformation during which an intermediate equilibrium shape occurs in panel (b) 
due to a wrinkling instability, and then relaxes and switches to become a steady-state saddle shape in panel (c). Active 
deformation involving complex transient dynamics like this is difficult to control, and hence the radial actuation is not 
preferred. On the other hand, when a constant contraction is applied in the azimuthal direction (i.e., λaeθ , see panel (d)), 
the circular plate can generate stable reversible bending deformation as shown in panels (e, f). Similar actuation strategies 
may be used for other thin soft structures with azimuthal symmetry. As shown in Fig. 9, when a radial actuation is applied 
on the inner surface of an oblate bell (see panel (a)), an opposing expansion occurs in the azimuthal direction due to the 
material incompressibility, driving a transient wrinkling deformation (see panel (b)). Then the whole body relaxes to become 
a steady flattened disk as shown in panel (c). Alternatively, as shown in Fig. 8(d–f), applying an azimuthal actuation results 
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Fig. 8. Snapshots of circular plate under (a–c) radial and (d–e) azimuthal actuation.

Fig. 9. Snapshots of an oblate bell under (a–c) radial and (d–e) azimuthal actuation.

in efficient contraction of the entire-body, which, as shown below, can effectively be used to generate reversible contraction 
motions to power a jellyfish robotic swimmer.

3.2.2. Undulation
Similar to the 2D cases discussed in Section 3.1, we first examine the undulatory swimming motion of a 3D rectangular 

plate. Here we adopt the 2D shape in Fig. 3(a), and extrude the beam of length L and thickness h along its third dimension 
for a certain width W . In Fig. 10, we show a case of a swimming plate of size (L, h, W ) = (1, 0.03, 0.25) that undergoes 
a quasi-steady undulatory swimming motion, due to sinusoidal contractions (Eq. (19)) applied alternatingly on both sides. 
Again, a uniform mesh is used for the Eulerian domain Lx × L y × Lz = 2.8 ×2.8 ×0.7 with the resolution 256 ×256 ×64. The 
Lagrangian domain L × h × W = 1 × 0.03 × 0.25 is partitioned into brick elements with the solution 84 × 3 × 21, leading to 
the volume ratio (i.e., Eulerian vs. Lagrangian) about 1.0. The other computation parameters are chosen as T = 1.0, δ = 0.5, 
G = 1000 and Re = 1000.

In Fig. 10(a), we visualize the 3D vortex structures by using the so-called λci criterion [56,57], together with the distri-
bution of the vorticity component ωz = ∂u

∂ y − ∂v
∂x on a 2D cross-section on the (x-y) plane in panel (b). In contrast to the 

2D case where the shedding vorticies form a reverse von Kármán vortex street, here flow separation generates two toroidal 
structures during each beating motion, leading to two arrays of vortex rings. Apparently, the dynamics quickly become pe-
riodic as shown by the COM velocity in panel (c), as well as the strain energy in panel (e), suggesting a quasi-steady free 
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Fig. 10. Snapshots of 3D vortex-core structures (a) and the projection of 2D vortices on the x–y plane (b) of an elastic plate that performs undulation under 
a sinusoidal actuation following Eq. (19). The computation parameters are chosen as α = 0.2, δ = 0.5, T = 1.0, G = 1000, and Re = 1000. (c) Instantaneous 
swimming velocity as a function of time. The color bar represents the magnitude of the 3D vorticity, i.e., |ω f | (b) Drag coefficient Cd = F y/ ( 1

2 〈U 〉2 A
)

(red 
line) and wake-induced force (i.e., Lamb vector) coefficient C w = −F L/ 

( 1
2 〈U 〉2 A

)
(blue line) as functions of time. (e) Strain energy E as a function of time.

Fig. 11. Simulation results of an undulating swimming motion by varying δ while fixing α = 0.2, T = 1.0, G = 1000 and Re = 1000. (a) Instantaneous swim-
ming speed U at δ = 0.3, 0.5, 0.7, respectively. (b) Time-averaged swimming speed 〈U 〉 and strain energy 〈E〉 as a function of δ for periodic locomotion. 
(c) Power P and efficiency η as a function of δ.

swimming motion. In panel (d), we show the drag coefficient Cd = F y/ 
( 1

2 〈U 〉2 A
)

in the swimming (y) direction, as well as 
the wake-induced force coefficient C w = −F L/ 

( 1
2 〈U 〉2 A

)
, where A = LW measures the dimensionless area of plate. Here 

the drag force is defined by net force exerted on the deformable body. The wake-induced thrust force FL = ∫
�c

ω f × u f dV

from the vortex structures behind the swimmer, where ω f ×u f = (∇ × u f
)×u f is the so-called Lamb vector [58]. We have 

found that the time-averaged net force is approximately zero, i.e., 〈Cd〉 = 0, since the active strain inputs do not generate 
extra forces. The oscillations of the Cd − t curve are largely due to the abrupt switches of the actuation on the two sides. 
In contract, the vortex rings induce negative hydrodynamic forces that vary periodically in the y direction to push fluid 
backward, which hence contributes to the thrust force generation for the swimming plate.

In Fig. 11 we show an example of varying the active segment length δ using a sinusoidal actuation when choosing 
α = 0.2, T = 1.0, G = 1000, and Re = 1000. According to the instantaneous swimming velocity U in panel (a), the plate 
typically starts a steady-steady navigation after performing 5–6 strokes, with a significant increase in the speed when δ
goes beyond 0.3. In panel (b), it is observed that the time-averaged swimming speed U increases with δ, and reaches a 
maximum value when δ ≈ 0.5. The time-averaged strain energy 〈E〉 grows monotonically as δ increases, driven by more 
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inputs from the contracting strain field through Fa . In panel (c), compared to the 2D case where the swimming power P
grows monotonically with δ, it approximately saturates around δ = 0.6, leading to the maximum efficiency at δ ≈ 0.5.

3.2.3. Jet-propulsion
Next we examine jet-propulsion based swimming (e.g., jellyfish) that propels the swimmer by squirting out water from 

the muscular cavity through periodic contractions. We follow the design reported in previous studies [59–62,75] to construct 
an oblate 3D bell with its initial shape a partial prolate ellipse which can be described as(

x

R1

)2

+
(

y

R2

)2

+
(

z

R3

)2

= 1 (22)

where R1 = R3 = 0.5 and R2 = 0.25, with a thickness h = 0.03. As discussed in Section 3.2.1, in order to generate robust 
whole-body contractions for a thin circular or bell-like plate, it is preferred to apply an active strain field with the principal 
contraction occurring in the azimuthal direction to avoid complex transient dynamics and instabilities of thin structures. 
We employ the same strategy here to apply the active contractions on the outer region of the inner surface marked by the 
blue circles in the inset of Fig. 12(a). The active segment is taken approximately 1/3 of the total arm-length of the bell. In 
addition, we thicken the bell top (denoted by ε, and we fix ε = 0.1) in order to stabilize the elastic deformation [63,64], 
which is important when both α and Re are large.

We employ a constant contraction following Eq. (18), instead of a gentle sinusoidal one which is ineffective in generating 
rapid deformations as required by jet propulsion. We choose parameters based on the in vivo measurements of jellyfish 
tissue (e.g., mesoglea) [65]. By using the Young’s modulus G ≈ 100Pa (the experimental data are approximately between 
10Pa and 100Pa) as well as choosing the characteristic length Lc ≈ 1cm [5] and velocity Uc ≈ 1cm/s, we choose the 
estimated the range of the dimensionless parameters as G = 10 ∼ 100 and Re = 10 ∼ 1000. An example of jet-propulsion is 
shown in Fig. 12. The periodic axisymmetric contractions of the oblate elastic bell is reminiscent of the “rowing” motion of 
a jellyfish [66–68]. As shown in panel (a) for the 3D vortex cores overlaid on the solid mesh, after the initial transient, the 
elastic bell quickly starts to perform a stable forward swimming motion as the bell arm paddles, leaving behind toroidal 
vortices [69,70,62,64]. The typical vortex dynamics during one period are illustrated in sequential snapshots of a 2D cross 
section shown in panels (b–i). In the power stroke corresponding to the first half-period (0 < t < T /2, see panels (b–e)), the 
applied active strains drive an inward contracting deformation. A shear-induced starting vortex is generated at the bell tip, 
interacting with the stopping vortex from the previous recovery stroke. After the starting vortex pair is separated from the 
bell arm, it is quickly advected with the jet flow due to the entrained fluid mass that is ejected downward (panels (c–e)). 
In the 2D plane, it is visualized as a vortex dipole. In the next half-period (T /2 < t < T , see panels (f–i)), turning off the 
active strains relaxes the elastic bell, driving a recovery stroke during which the fluid mass refills the bell. In the meantime, 
a stopping vortex with an opposite sign is generated and then adhered on the bell tip in the expansion process.

Details of the bell kinematics during one period is shown in Fig. 13. In panel (a), the sequential snapshots of the swim-
mer’s contour are plotted. Note that while actively interacting with the fluid flows, imposing a large step-like contracting 
deformation of thin soft structures may trigger resonances during which the entire body oscillates quickly. For example, the 
bell top bounces back and force during contraction (also see Fig. 12(b–e) as well as movie S2), and then overshoots the 
equilibrium position and swings back during relaxation. Such oscillatory behaviors can be quantitatively characterized by 
examining the variation of the total strain energy as a function of time in panel (b) where small amplitudes fluctuations are 
observed, immediately after the active strains being turned on and off. This is also reflected on the instantaneous average 
velocity in panel (c). As the bell starts to contract, its COM velocity quickly reaches a maximum, and then relaxes following 
the structural oscillations.

Systematically varying α and Re reveals various different regimes of jellyfish-like swimming motion as a result of the 
complex fluid–thin structure interactions. The dynamic behaviors are summarized in the phase diagram in Fig. 14(a) where 
the background colors represent the time-averaged COM velocities at steady state. As explained above, in the regime of large 
α and Re, the bell exhibits a fast forward swimming motion (see COM velocity marked by the red line in panel (b)), due 
to the strong positive feedbacks obtained from the fast fluid jet that carries fluid momentum backward. In the regime of 
smaller α and lower Re, however, while the bell arms are rowing, the locomotion is significantly weakened, largely due to 
the reduced amount of inputs from active contractions which hence leads to much weaker elastic deformations. Therefore, 
we find that the contracting deformation and the induced whole-body vibration are comparable. Their interplay eventually 
leads to complex arm kinematics as well as the momentum exchange between the fluid and the solid phase. Interestingly, 
we have observed that while swimming slowly (see the COM velocities marked by the blue and black colors in panel 
(b)), the bell can exhibit both forward (marked by solid squares) and backward (marked by black triangles, see movie S3) 
movement.

4. Discussion and conclusion

In this work we have developed a FD-based computational framework to simulate swimming motion of soft robots by 
distributing active contractions on the elastic solid body. The active strain model is based on the multiplicative decompo-
sition of the deformation gradient tensor. As a first order approximation, the induced active deformation is independent 
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Fig. 12. Typical vortex structures of an elastic bell undergoing jellyfish-like swimming in the moving coordinates, when choosing α = 0.8, T = 2.0, G = 100, 
Re = 500, ε = 0.1, δ = 0.21, and h = 0.03. (a) Vortex core overlaid on the solid mesh. The color bar represents the magnitude of the 3D vorticity, i.e., |ω f |. 
Inset: Schematic of the swimming elastic bell with a thickened top and azimuthal actuation. (b–i) In-plane fluid velocity vector field (u, v) overlaid on the 
colormap of vorticity on a 2D cross section plane during one period.
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Fig. 13. Highlights of bell’s rowing motion accompanying whole-body vibrations through the kinematics of the bell arm during the contracting and refilling 
process (a). The instantaneous strain energy (b) and COM velocity(c) as function of time.

Fig. 14. (a) Phase diagram of (α,Re) for a swimming bell undergoing jet-propulsion locomotion. The while and black symbols represent the forward 
and backward locomotion, respectively. The background color represents the time-averaged steady-state swimming velocity 〈U 〉 at late times. (b) Typical 
instantaneous COM velocities when choosing α′s in different regimes at Re = 250.

of mechanical stress, and can be easily measured experimentally by varying the external stimuli without imposing any 
mechanical load. From the biomimetic perspective, the active strain approach makes it straightforward to distribute active 
contractions in the muscle-fiber directions by following biological muscle architectures. Moreover, it is useful to take advan-
tage of finite thickness of thin elastic structures by imposing an inhomogeneous contraction field to achieve desired elastic 
deformation.

Using the FD/active-strain method, we have been able to virtually design 2D/3D thin, light-weight soft robots with simple 
geometries (e.g., square, circle, bell) that perform biomimetic undulation and jet-propulsion. It is also straightforward to 
activate soft swimmers with more complex geometries by distributing active strains on desired locations. As shown in 
Fig. 15 and movie S4, we have followed the design by Nawroth et al. [5] to simulate a baby jellyfish (e.g. early-stage 
Ephyrae) that has a circular-disk body and multiple attached “arms”. In particular, it is important to apply strains to follow 
the jellyfish muscle architecture. As shown in Fig. 15(a), we make the contractions occur in the radial direction to be aligned 
with the arms, together with a layer of contraction simultaneously imposed in the azimuthal direction near the rim of the 
circular disk, which turns out to be critical in stabilizing the thin-structure deformation in forward swimming. A typical 
failure case is shown in Fig. 15(b) (also see movie S4) where only the radial contractions are applied. It is seen that the 
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Fig. 15. Comparison of the dynamics of soft robotic baby-jellyfish by distributing active contractions (marked by the blue lines) on (a) arms (i.e., radially) 
and partial of the circular disk (i.e., azimuthally), and (b) arms only. The four sequential snapshots in (a) highlight a stable directional locomotion in one 
actuation period. The snapshot in (b) shows an example of unstable asymmetric deformations without applying the azimuthal contraction in the disk to 
stabilize the structure.

baby jellyfish cannot generate a directional locomotion due to very unstable deformations as shown by the snapshot. We 
have also tried varying the size of the area covered by radial actuation but without success (not reported here).

While we only consider some simple designs, the FD/active strain model can be generally applied to manipulate elastic 
structures of arbitrary shapes and sizes. In particular, it is intriguing to incorporate more elaborate constitutive models 
(e.g., viscoelastic or composite materials) in order to mimick the behaviors of real biological tissues. Moreover, the active 
strain model can be flexibly implemented in other computational frameworks, either using boundary conforming methods 
or Cartesian grid methods, to handle coupling of soft actuation and the induced fluid motion. Last but not least, in order 
to optimize soft robotic systems with a large number of parameters (e.g., shape, stiffness, and actuation distribution) and 
possibly multiple design objectives (e.g., swimming speed, power, and efficiency), it is desirable to couple the existing 
CFD tools with multi-objective evolutionary algorithms and packages such as the Unified Non-dominated Sorting Genetic 
Algorithm (U-NSGA) II/III [71–74]. The integrated framework like this will facilitate design of high-performance soft robotic 
machines for a wide range of applications in engineering and applied sciences.
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