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Abstract The free-surface shape of a liquid in a uniformly rotating cylinder in the presence of surface tension
is determined before and after the onset of dewetting at the bottom of the cylinder. Two scenarios of liquid
withdrawal from the bottom are considered, with and without deposition of thin film behind the liquid. The
governing non-linear differential equations for the axisymmetric liquid shapes are solved numerically by an
iterative procedure similar to that used to determine the equilibrium shape of a liquid drop deposited on a
solid substrate. The numerical results presented are for cylinders with comparable radii to the capillary length
of liquid in the gravitational or reduced gravitational fields. The capillary effects are particularly pronounced
for hydrophobic surfaces, which oppose the rotation-induced lifting of the liquid and intensify dewetting at
the bottom surface of the cylinder. The free-surface shape is then analyzed under zero gravity conditions. A
closed-form solution is obtained in the rotation range before the onset of dewetting, while an iterative scheme
is applied to determine the liquid shape after the onset of dewetting. A variety of shapes, corresponding to
different contact angles and speeds of rotation, are calculated and discussed.

1 Introduction

The mechanics of rotating fluids is an important part of the analysis of numerous scientific and engineering
problems. These include the problems from earth and planetary science, stability analysis of projectiles and
satellites with spinning fluid tanks, atmospheric and oceanic circulation, turbomachinery, centrifuges, liquid
handling and fluid management systems, rotating liquid metals, liquid mirrors, liquid nuclei, etc. [1–4]. The
present paper is devoted to the analysis and numerical determination of the gyrostatic shape of a liquid in a
rotating cylinder in the presence of surface tension and gravity. There has been a considerable interest devoted
to this problem in the past, because of its importance for centrifugal casting of optical surfaces, such as mirrors
and contact lenses, and for exploring the effects of microgravity on fluids [5–14]. The study is related to other
problems of rotating liquid masses, which include the determination of gyrostatic shapes of rotating drops held
together by surface tension, rotating liquid bridges between flat plates, liquid rings around solid rods, rotating
pendant drops and liquid columns, liquid in eccentric grooves on a rotating disk, and other rotating systems
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(a) (b)

Fig. 1 a An imagined reference configuration of liquid in a rotating circular cylinder of inner radius R and height H . The height
of the still liquid before its rise and without the capillary effects is h. b An axisymmetric shape of the liquid surface under uniform
rotation with the angular speed ω, and the same angular momentum as in part (a)

in which the meniscus profile does not intersect the axis of rotation [15–18]. There are many other problems
in fluid mechanics in which capillary effects play an important role. For example, the influence of the contact
angle between a thin fluid film and side walls of an inclined open channel on the velocity profile and instability
of the free surface have been recently studied analytically and experimentally in [19,20]. Various problems of
liquid dynamics and sloshing in spinning tanks are discussed in [4], which also offers a comprehensive list
of references in this field.

2 Liquid shape in a rotating cylinder before dewetting

Figure 1a shows an imagined reference configuration of the system, just upon the removal of external torque,
which brought the system to a rotating state. The reference configuration is virtual in the sense that it is assumed
that liquid has not yet begun to rise from its still level (h) and that capillary effects are frozen. The moment
of inertia of the liquid in this state is J0 = m R2/2, the moment of inertia of the rigid cylinder is J•, and
ω0 = H/(J0 + J•) is the angular speed corresponding to a given angular momentum H. The mass of the liquid
is m = ρl V , where ρl as its density. The volume of the liquid is V = π R2h, and R is the internal radius of the
cylinder. The internal energy associated with this virtual liquid configuration, up to a constant term, is

U0 = R2πσlv + 2π Rhσsl + 2π R(H − h)σsv + 2π Rτ + 1

2
γlπ R2h2. (2.1)

The height of cylinder’s wall is H , and γl = ρl g is the specific weight of the liquid, where g denotes the
acceleration of the gravity. The density of the surrounding gas is assumed to be much smaller than the density
of the liquid (ρv � ρl ); otherwise, the specific weight difference �γ = γl −γv should appear in place of γl in
the last term on the right-hand side of (2.1). The solid/vapor and liquid/vapor surface energies are denoted by
σsv and σlv , the solid/liquid interface energy is σsl , and τ is the line tension along the triple solid/liquid/vapor
contact line. The kinetic energy of the liquid in this configuration is K0 = (1/2)J0ω

2
0.

After removal of the external torque by which the cylinder was set in rotation, and upon the transient time
and decay of viscous oscillations,1 the liquid is in a state of rigid rotation around the z axis (Fig. 1b), with
the angular velocity corresponding to a given angular momentum H = (J0 + J•)ω0 = (J + J•)ω. Assuming
that the shape of the liquid surface is axisymmetric and described by a single-valued function z = z(r), the
internal energy of the system, up to a constant term, is

U = σlv S + 2π Rz(R)(σsl − σsv) + 2π Rτ + γl

R∫

0

πr z2 dr. (2.2)

1 The manner in which the state of rigid rotation of the liquid contained in the cylinder is established (i.e., the development of
the Ekman layer, the inviscid fluid spin-up, and the viscous decay of residual oscillations) is not discussed in this paper, but has
been studied in the past [21–23]. In a sense, an inverse problem of centrifugal instabilities during spin-down to rest of a viscous
incompressible fluid in a rigid cylindrical container, brought to rest impulsively, has been studied in [24]. Additional references
can be found in [4].
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We neglect the small effect of gravity and angular speed on the surface energy σlv . The corresponding kinetic
energy of the liquid is

K = 1

2
Jω2, J = 2πρl

R∫

0

r3z dr. (2.3)

The area S in (2.2) is the surface area of the liquid/vapor interface, whose profile z = z(r) is to be determined.
The expressions for the surface area S and the volume V are

S = 2π

R∫

0

r(1 + z′ 2)1/2 dr, V = 2π

R∫

0

r z dr. (2.4)

It is assumed that the angular velocity is sufficiently small so that the surface of the liquid does not touch the
bottom of the cylindrical container, so that the interface energy π R2σsl is the same in the configurations (a)
and (b) of Fig. 1, and thus excluded from expressions (2.1) and (2.2). The extension of the analysis to include
the withdrawal of liquid from the bottom of the cylinder (dewetting) will be presented in Sect. 3.

The effective mechanical potential of the system is L = U − K . If it is assumed that there is no fluid
evaporation, the appropriate functional for the variational study is 	 = L − λV , where λ is the Lagrangian
multiplier, with the dimension of pressure. It is also assumed that the height H of the cylinder is large enough
so that liquid does not spill over the side of the cylinder. In view of (2.1)–(2.4), the potential 	 can be written
as

	 =
R∫

0

�(r, z, z′) dr, (2.5)

where, to within a constant term,

� = 2π

{
σlvr

(
1 + z′ 2)1/2 + r z

[
1

2
γl

(
z − ω2

g
r2
)

− λ

]
+ (σsl − σsv)z δ̄(R − r)

}
. (2.6)

The Dirac delta function is denoted by δ̄.
The variation of 	, corresponding to the variation δz of the shape of the surface S, is

δ	 =
R∫

0

[
∂�

∂z
δz + ∂�

∂z′
d

dr
(δz)

]
dr. (2.7)

Upon integration by parts of the second term on the right-hand side of (2.7), this becomes

δ	 =
R∫

0

[
∂�

∂z
− d

dr

(
∂�

∂z′

)]
δz dr +

(
∂�

∂z′ δz

)r=R

r=0
. (2.8)

By dividing (2.8) with the variation δz(�) at an arbitrary � ∈ [0, R], we obtain

δ	

δz(�)
= R

[
∂�

∂z
− d

dr

(
∂�

∂z′

)]
r=�

+
[
∂�

∂z′ δ̄(r − �)

]r=R

r=0
. (2.9)

The first term on the right-hand side has the usual form of the Euler–Lagrange’s equation of the variational
principle, while the second term accounts for the boundary conditions. Consequently, upon evaluating the
gradients of � from (2.6), there follows

δ	

δz(�)
= 2π R�

{
−2σlvκ(�) + γl

[
z(�) − ω2

2g
�2
]

− λ

}

+ 2π R(σsl − σsv + σlv cos θ) δ̄(R − �). (2.10)

The mean curvature of the liquid’s profile is
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κ(r) = 1

2

[
z′

r(1 + z′ 2)1/2 + z′′

(1 + z′ 2)3/2

]
, (2.11)

while the cosine of the angle between the tangent to the surface profile and the vertical wall of the cylinder is
cos θ = z′(R)/[1 + z′ 2(R)]1/2.

2.1 Equilibrium conditions

In the gyrostatic configuration, the potential 	 has a stationary value, and the expression in (2.10) must vanish.
This gives

2σlvκ(�) − γl

[
z(�) − ω2

2g
�2
]

+ λ = 0, (2.12)

σsl − σsv + σlv cos θ = 0. (2.13)

The term 2σlvκ(r) represents the projection of the surface tension σlv , acting along the circumference of an
infinitesimal surface element dS, onto the outward direction orthogonal to dS. Consequently, the remaining
terms on the left-hand side of (2.12) represent the pressure difference �p(r) = pv(r) − pl(r) across the
vapor/liquid interface, so that

2σlvκ(r) − �p(r) = 0, �p(r) = γl

[
z(r) − ω2

2g
r2
]

− λ. (2.14)

The term (ρlω
2r2/2) is the rotation-induced dynamic pressure. From (2.14), by taking r = 0, the Lagrangian

multiplier λ can be given the interpretation λ = γl z(0) − �p(0). Consequently, the differential equation for
the shape of the liquid/vapor interface becomes

κ(r) = γl

2σlv

[
z(r) − z(0) − ω2

2g
r2
]

+ �p(0)

2σlv
. (2.15)

In particular, the curvature at the bottom is κ(0) = �p(0)/(2σlv), so that (2.15) can be rewritten as

κ(r) = κ(0) + γl

2σlv

[
z(r) − z(0) − ω2

2g
r2
]

. (2.16)

This equation is analogous to the Young–Laplace differential equation describing the shape of a liquid drop
deposited on a smooth solid substrate, apart from the presence of the rotation-induced dynamic pressure term
on its right-hand side [25,26].

The second equilibrium condition (2.13) yields the Young’s equation for the contact angle,

cos θ = σsv − σsl

σlv
, (2.17)

independently of g and ω. The angle θ does not decrease with the increasing angular velocity, as it does in
the absence of surface tension, because it is a local material property, governed by the surface tensions alone,
unaffected by the external fields due to gravity and rotation. The independence of the equilibrium contact angle
of gravity is well known in the mechanics of liquid drops deposited on a flat solid substrate [27–29].

2.2 Stability of equilibrium

The axisymmetric gyrostatic configuration of a rigidly rotating liquid in a cylindrical container, before the
onset of dewetting, is unique and stable. The first variation of the potential 	 in (2.5) is given by (2.7). Its
second variation is

δ2	 =
R∫

0

[
∂2�

∂z2 (δz)2 + 2
∂2�

∂z∂z′ δzδz′ + ∂2�

∂z′ 2 (δz′)2
]

dr, (2.18)

i.e.,
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Fig. 2 The liquid pressure at point C can be calculated from the liquid pressures at points A and B. The pressure jumps across
the liquid/vapor interface at points A and B can be expressed in terms of local curvatures by the Young–Laplace equation

δ2	 =
R∫

0

[
ρl g(δz)2 + σlv

(1 + z′ 2)3/2 (δz′)2
]

2πr dr. (2.19)

Since the surface tension σlv is positive, from (2.19) it follows that, for g ≥ 0, the second variation of the
potential 	 is everywhere positive (δ2	 > 0), so that the potential 	 is a convex functional in the entire
space of single-valued functions z = z(r) for the liquid shape. It can be shown that it is also convex in the
space of non-axisymmetric single-valued functions z = z(x, y); see [2], p. 157. Consequently, the gyrostat-
ic configuration determined from the stationarity condition δ	 = 0 corresponds to the minimum of 	 and
represents unique and stable gyrostatic configuration. The uniqueness of the shape of capillary surface in the
case of a non-rotating circular cylinder has been previously proven in [30,31]. The non-uniqueness does occur
in problems with the opposite direction of gravity and in the absence of lateral constraint, for example, rotat-
ing pendant drops and liquid bridges between flat plates, which can develop a longitudinal (amphora mode)
instability, or a skipping-rope (C-mode) instability; see [2,16], and the references therein.

2.3 Direct derivation of the governing ODE

A simple direct derivation of the governing differential Eq. (2.16) is as follows. The liquid pressure pC at
point C in Fig. 2 can be calculated from the liquid pressure at either the point A or B (pl

A or pl
B), by add-

ing the dynamic or hydrostatic pressure contribution, respectively. This gives pC = pl
A + ρl(rω)2/2 and

pC = pl
B + γl(z − z0). Thus,

pl
A − pl

B = γl(z − z0) − 1

2
ρlr

2ω2. (2.20)

On the other hand, by the Young–Laplace equation, the pressure discontinuities across the liquid/vapor interface
at the points A and B are p0 − pl

A = 2σlvκ(0) and p0 − pl
B = 2σlvκ(r), so that

pl
A − pl

B = 2σlv[κ(r) − κ(0)]. (2.21)

By equating (2.20) and (2.21), there follows (2.16). While this derivation is appealing, the derivation based
on the variational approach is more general, because it also delivers the expression for the contact angle θ ,
confirming the validity of Young’s Eq. (2.17) in the presence of gravity and centrifugal force.
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2.4 Numerical integration

The integration of the differential Eq. (2.16) proceeds as follows. In view of the identity

d

dr

[
r z′

(1 + z′ 2)1/2

]
= r z′′

(1 + z′ 2)3/2 + z′

(1 + z′ 2)1/2 , (2.22)

Eq.(2.16) can be rewritten as

d

dr

[
r z′

(1 + z′ 2)1/2

]
= 2κ(0)r + γl

σlv

[
r z − r z(0) − ω2

2g
r3
]

. (2.23)

Since z′(0) = 0, the integration of (2.23) gives

cos θ = z′

(1 + z′ 2)1/2 = κ(0)r + γl

σlv

⎡
⎣1

r

r∫

0

�z(�) d� − 1

2
r z(0) − ω2

8g
r3

⎤
⎦ . (2.24)

At r = R, (2.24) gives

2κ(0) − γl

σlv
z(0) = 2 cos θ

R
− γl

σlv

(
V

π R2 − ω2

4g
R2
)

. (2.25)

By substituting (2.25) into (2.16), there follows

z′′

(1 + z′ 2)3/2 + z′

r(1 + z′ 2)1/2 − γl

σlv
z = 2 cos θ

R
− γl

σlv

[
h − ω2

4g
(R2 − 2r2)

]
. (2.26)

The accompanying boundary conditions are

z(0) = z0, z′(0) = 0, z′(R) = cot θ = σsv − σsl

[σ 2
lv + (σsv − σsl)2]1/2

. (2.27)

The constant volume condition provides an implicit expression for z0, such that

2

R∫

0

r z(r) dr = R2h. (2.28)

The non-dimensional form of (2.26) is

z̄′′

(1 + z̄′ 2)3/2 + z̄′

r̄(1 + z̄′ 2)1/2 − Bo z̄ = 2 cos θ − Bo
[
h̄ − η

4
(1 − 2r̄2)

]
, (2.29)

where r̄ = r/R, z̄ = z/R, and h̄ = h/R. The Bond number is

Bo =
(

R

lo

)2

= R2ρl g

σlv
l2
o = σlv

ρl g
, (2.30)

where lo is the capillary length [40], while the non-dimensional number η = Rω2/g represents the ratio of the
maximum centrifugal and gravity accelerations. By introducing the rotation-induced capillary length lω, and
the associated rotation-induced Bond number [15]

Bω =
(

R

lω

)2

= ρl R3ω2

σlv
, l2

ω = σlv

ρl Rω2 , (2.31)

the comparison of (2.30) and (2.31) establishes the connection

η = Bω

Bo
=
(

lo
lω

)2

= Rω2

g
. (2.32)
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Fig. 3 The coordinate origin placed at the lowest point of the liquid surface. The depth of liquid below the coordinate origin is z0

2.5 Numerical results

In the numerical treatment, it is convenient to place the coordinate origin at the bottom point of the liquid/vapor
interface (Fig. 3), and use the following iterative procedure, similar to the well-known procedure used to deter-
mine the equilibrium shape of a liquid drop deposited in the gravity field on a solid substrate [32–35]. Other
methods of integration are possible [36]. For given θ, Bo, and η, one assumes the value for h̄ and solves (2.29),
subject to the boundary conditions z̄(0) = 0 and z̄′(0) = 0. If the resulting slope z̄′(1) �= cot θ , the value of
h̄ is modified until z̄′(1) = cot θ . Denote the so-determined h̄ by h̄0. If the actual (normalized) initial height
of the liquid is h̄ > h̄0, there is a cylindrical portion of the liquid below the lowest point of the liquid surface,
whose height is z0 = (h̄ − h̄0)R. There are infinitely many solutions of Eq. (2.29), but only those profiles that
actually touch or intersect the vertical wall r = R are of interest, and only one of them corresponds to a given
contact angle between the liquid and the wall, and a given volume of the liquid. On the other hand, if h̄ < h̄0,
dewetting takes place, which will be analyzed in Sect. 3.

Figure 4a, b shows the liquid surface shape in the case θ = 45◦ and 135◦, corresponding to Bond’s
number Bo = 50, and η = 5 (Bω = 250). The dashed curves specify the liquid shape in the case
when the surface tension effects are ignored, calculated from the expressions listed in the Appendix of
the paper. In both cases, the normalized volume of liquid, defined as V̄ = V/(π R3) ≡ h̄, was equal to
V̄ ≈ 1.14365, as obtained by the described iterative procedure of solving (2.29). Without the surface tension
effects, dewetting takes place up to the radius R̄0 = 0.2085, with the maximum elevation of the surface
z̄(R) = 2.3913.

Figure 4c–f shows the increasing effect of the surface tension with the decrease of the Bond number
(i.e., the decrease of the radius R relative to the liquid capillary length l). A particularly pronounced effect
is seen in Fig. 4f, which corresponds to the hydrophobic surface of the cylindrical wall and the contact
angle θ = 135◦. The liquid volume was V̄ = 0.42351. The hydrophobicity is such that the surface tension
suppresses the liquid rising above the liquid elevation at the center of the cylinder, so that in this case the
liquid shape is almost cylindrical. The volumes in each case are chosen so that the liquid surface just touches
the bottom of the cylinder at its center (solid curves in Fig. 4a, c, and e, with the included surface tension
effect).

3 Dewetting of the bottom surface of the cylinder

For a sufficiently high angular speed, the bottom of the meniscus surface will approach the bottom of the
cylinder to a distance of the order of liquid’s molecular size, that is, touch the bottom of the cylinder at
the continuum-level modeling. Denote the corresponding angular speed, at which z(0) = 0, by ω∗. From
Eq. (2.25), there follows

Rκ∗(0) = cos θ + 1

8
Bω∗ − 1

2
Boh̄, Bω∗ = R3ρlω

2∗
σlv

. (3.1)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 The shape of the liquid surface, corresponding to the indicated values of Bo, η, and θ . In parts a and b, the normal-
ized liquid volume is V̄ ≈ 1.14365. Without the surface effects, R̄0 = 0.2085, z̄(R) = 2.3913. With the surface effects:
a z̄(0) = 0, z̄(R) = 2.2011, and b z̄(0) = 0.0565, z̄(R) = 1.8231. In parts c and d, the normalized liquid volume is V̄ ≈
1.03738. Without the surface effects, R̄0 = 0.2983, z̄(R) = 2.2775. With the surface effects: c z̄(0) = 0, z̄(R) = 1.9761, and
d z̄(0) = 0.1416, z̄(R) = 1.5229. In parts e and f, the normalized liquid volume is V̄ ≈ 0.42351. Without the surface effects,
R̄0 = 0.6465, z̄(R) = 1.4552. With the surface effects: e z̄(0) = 0, z̄(R) = 0.8035, and f z̄(0) = 0.3938, z̄(R) = 0.3398

For a known θ , this equation specifies the radius of the curvature at the bottom of the meniscus at the instant
of its touchdown with the bottom of the container. The corresponding angular speed ω∗ has to be determined
numerically by the analysis presented in Sect. 2.

3.1 The liquid shape upon dewetting

For angular speeds ω > ω∗, the liquid withdraws from the bottom surface of the cylinder (5). On the micro-
scopic scale, the withdrawal initially takes place by deposition of thin liquid film at the bottom of the cylinder.
The film deposition will continue unless the centrifugal force is able to rupture the molecular liquid bonds
within the film, beyond which the actual dewetting of the bottom of the cylinder could begin. The experimental
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Fig. 5 The liquid surface shape after the onset of dewetting, which has spread to the radius R0. The wetting contact angles at the
bottom and the lateral wall of the cylinder are ϕ and θ , respectively

evidence for both possibilities has been reported in [37]. Let R0 < R denote the extent of deposited film or
actual dewetting, as discussed above. Assuming again that the height of the cylindrical wall is large enough
so that liquid does not spill over the side of the cylinder, the appropriate functional for the variational study is
	 = U − K − λV , where λ is the Lagrangian multiplier. The free energy, up to a constant term, is

U = 2πσlv S + 2π Rz(R)(σsl − σsv) + π R2
0σ ∗ + 2π R0τ

∗ + γl

∫

V

ζdV, (3.2)

and K = (ρl/2)
∫

V �2dV is the kinetic energy of the liquid. The coordinates at an arbitrary point within the
liquid are (�, ζ ). The governing equations in this section will be conveniently derived without the commitment
to a particular choice of coordinates, so that the analysis encompasses the possibility that the function r = r(z),
rather than z = z(r), is single-valued, which occurs in the case of hydrophobic bottom surface near the triple
contact line. In the numerical evaluation, both cases can be treated simultaneously by taking the arc length s
along the liquid/vapor interface as the parameter [38], so that r = r(s) and z = z(s).

In the case of actual dewetting, the surface energy σ ∗ in (3.2) is σ ∗ = σ̂sv − σ̂sl . For generality, it is
assumed that the bottom surface of the container is different from the lateral wall surface, so that the surface
energies at the bottom are σ̂sv and σ̂sl , while the lateral wall has the surface energies σsv and σsl . Different
surface energies can be a consequence of the manufacturing (deep drawing) production of the cylinder, or the
bottom plate can be made of different material from the welded lateral wall of the cylinder. The line tension
along the triple contact line at the bottom surface is τ ∗, which is important in the early stages of dewetting,
when R0 � R [39]. The line tension also includes the energy of the broken molecular bonds.

If the liquid withdraws from the bottom surface of the cylinder by leaving a thin film behind, the surface
energy σ ∗ is equal to σlv . It is assumed that the film is sufficiently thick that its lower face, which is in contact
with the solid, can still be assigned the surface energy σsl , while its upper face is assigned a surface energy
σlv [40]. In this case τ ∗ = 0, because the liquid elevates from the film smoothly and without contact with a
solid surface of the cylinder.

If a surface element dS at an arbitrary point of S, which is not on the bounding circles r = R0 or r = R, is
given a virtual displacement δu, then δ(dS) = −2κδun dS, where δun is the projection of δu onto the surface
outward normal. The surface elements at the points of the contact circles r = R0 and r = R need to be
additionally stretched in the direction tangential to the surface, to preserve the liquid contact with the bottom
of the cylinder and with its lateral wall, so that the total area change of the surface S can be written as

δS = −
∫

S

2κδun dS − 2R0π cos ϕ δR0 + 2Rπ cos θ δz(R). (3.3)
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Furthermore, by the Reynolds transport theorem,

δV =
∫

S

δun dS, δ

∫

V

(�2, ζ ) dV =
∫

S

(r2, z) δun dS. (3.4)

Consequently, the variation of the potential function δ	 = δU − δK − λδV becomes

δ	 = −
∫

S

(
2σlvκ − γl z + 1

2
ρlω

2r2 + λ

)
δun dS + 2Rπ (σsl − σsv + σlv cos θ) δz(R)

+ 2R0π

(
σ ∗ − σlv cos ϕ + τ ∗

R0

)
δR0.

The stationary condition δ	 = 0, defining a gyrostatic liquid shape, thus gives

2σlvκ − γl z + 1

2
ρlω

2r2 + λ = 0, (3.5)

σsl − σsv + σlv cos θ = 0, σ ∗ − σlv cos ϕ + τ ∗

R0
= 0. (3.6)

The last two expressions specify the wetting angles θ and ϕ as

cos θ = σsv − σsl

σlv
, cos ϕ = σ ∗

σlv
+ τ ∗

R0σlv
. (3.7.1,2)

Equation (3.7.1) is Young’s equation for the contact angle θ between the liquid and the vertical wall. Equation
(3.7.2) defines the contact angle ϕ between the liquid and the bottom of the cylinder. The sign in front of the
line tension (τ ∗) term is opposite to the (minus) sign appearing in the corresponding equation for the contact
angle of a liquid drop deposited on a solid substrate [41], because the center of curvature of the triple contact
line is at the center of dewetted island in the present case, while it is at the center of the solid/liquid interface
in the case of a drop. If a thin film is deposited behind a withdrawing liquid, then σ ∗ = σlv and τ ∗ = 0, so
that (3.7) gives ϕ = 0, that is, the liquid elevates from a deposited film with a vanishing slope, z′(R0) = 0.
The volume of the deposited thin film is assumed to be negligibly small relative to the entire volume of the
rotating liquid.

3.2 Determination of the Lagrangian multiplier

Consider the liquid shape described by a single-valued function z = z(r), which physically applies if the
bottom surface is hydrophilic (ϕ ≤ π/2), or if a thin film is deposited behind a withdrawing liquid (ϕ = 0).
In view of the identity (2.22), the differential Eq. (3.5) can be rewritten as

d

dr

[
r z′

(1 + z′ 2)1/2

]
= γl

σlv

(
r z − ω2

2g
r3
)

+ λ

σlv
r. (3.8)

Upon the integration from R0 to R, there follows

λ = 2σlv

R2 − R2
0

(R cos θ − R0 sin ϕ) − γl

[
V

π(R2 − R2
0)

− ω2

4g
(R2 + R2

0)

]
. (3.9)

When (3.9) is substituted back into (3.5), the differential equation for the liquid surface becomes

z′′

(1 + z′ 2)3/2 + z′

r(1 + z′ 2)1/2 − γl

σlv
z = q(r), (3.10)

q(r) = 2

R2 − R2
0

(R cos θ − R0 sin ϕ) − γl

σlv

[
V

π(R2 − R2
0)

− ω2

4g
(R2 + R2

0 − 2r2)

]
. (3.11)

The accompanying boundary conditions are z′(R0) = tan ϕ, z′(R) = cot θ , where the contact angles ϕ and
θ are specified by (3.7.1,2). In addition, z(R0) = 0, by the definition of R0.
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3.3 Uniqueness and stability

We did not construct the uniqueness and stability proves for the gyrostatic liquid shape upon the onset of
dewetting at the bottom of the cylindrical container. Numerical evaluations, however, suggest that, among all
axisymmetric shapes, the determined gyrostatic shape corresponding to a selected set of control parameters is
unique and stable. Non-axisymmetric bifurcations of axisymmetric gyrostatic configurations were not studied,
but may be unlikely because of the stabilizing effect of the constraining lateral wall and the downward direction
of gravity (toward the bottom of the cylindrical container). It is energetically and topologically challenging for
the liquid to find a non-axisymmetric gyrostatic shape in an axisymmetric circular cylinder, wetting its wall
with the same contact angle all around an asymmetric triple contact line. This, however, has to be verified, and
thus, the extension of the present work to examine the stability of axisymmetric gyrostatic shape with respect
to non-axisymmetric perturbations is a worthwhile goal for future research.

3.4 Iterative numerical integration of the differential equation

The solution of the non-linear differential Eq. (3.10) proceeds numerically in an iterative semi-inverse manner.
For a given ω > ω∗, one assumes the value of the radius R0 and solves (3.10), subjected to the boundary
conditions z(R0) = 0 and z′(R0) = tan ϕ. If the resulting slope z′(R) �= cot θ , the initial guess for R0 is
modified, and the procedure repeated until the boundary condition z′(R) = cot θ is numerically satisfied.
There is only one such shape corresponding to a given volume of the liquid.

The numerical evaluation is facilitated by rewriting (3.10) and (3.11) in the non-dimensional form

z̄′′

(1 + z̄′ 2)3/2 + z̄′

r̄(1 + z̄′ 2)1/2 − Bo z̄ = q̄(r), (3.12)

q(r) = 2

1 − R̄2
0

(cos θ − R̄0 sin ϕ) − Bo

[
V̄

1 − R̄2
0

− η

4
(1 + R̄2

0 − 2r̄2)

]
. (3.13)

Figure 6a, b shows the liquid shape in the case Bo = 2 and η = 5, when the wetting contact angles are
(θ = 45◦, ϕ = 45◦) and (θ = 135◦, ϕ = 45◦). Figure 6c, d shows the same when ϕ = 0. The normalized
volume of the liquid was V̄ ≈ 0.1288. For hydrophobic surface of the cylinder wall, the extent of dewetting, as
well as the rotation-induced rising of the liquid, is suppressed relative to the hydrophilic surfaces. The dashed
curves specify the liquid shape in the case when the surface tension effects are absent.

4 Liquid shape in a rotating cylinder under zero gravity

The surface tension plays an increasingly important role under conditions of reduced gravity [10,12]. Such
studies are of importance for better understanding of the fluid behavior in the projectile and spacecraft fuel
tanks and for preventing flight instabilities due to fluid-tank interactions.

4.1 Determination of the liquid shape before dewetting

If the surface tension is ignored (σlv = 0), the liquid in the container cannot sustain rotation in the zero gravity
field. Indeed, the expressions for the liquid pressure at point C , calculated from either the pressure at point A
or B (Fig. 7a), are

pC = pA + 1

2
ρlr

2ω2, pC = pB . (4.1)

Since pA = pB = p0, the above two expressions for pC are irreconcilable, and thus, there is no gyrostatic
configuration, unless ω = 0.

In the absence of gravity, Eq. (2.26) reduces to

z′′

(1 + z′ 2)3/2 + z′

r(1 + z′ 2)1/2 = 2 cos θ

R
+ ρlω

2

4σlv
(R2 − 2r2), (4.2)

while Eq. (2.25) becomes
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(a) (b)

(c) (d)

Fig. 6 The shape of the liquid surface, corresponding to the indicated values of B, η, ϕ, and θ . The normalized liquid volume
is V̄ ≈ 0.1288. Without the surface effects, R̄0 = 0.824 and z̄(R) = 0.8025. With the surface effects: a R̄0 = 0.6451 and
z̄(R) = 0.4127. b R̄0 = 0.3 and z̄(R) = 0.0851. c R̄0 = 0.4518 and z̄(R) = 0.3755. d R̄0 = 0.2052 and z̄(R) = 0.2157

(a) (b)

Fig. 7 a In the absence of surface tension, the expressions for liquid pressure at point C , calculated from the pressures at points A
and B, are irreconcilable. b In the presence of surface tension, the liquid surface finds an equilibrium shape. The liquid pressure at
point C can be calculated from the liquid pressures at points A and B, while the pressure jumps across the liquid/vapor interface
at those points can be expressed in terms of the corresponding local curvatures

κ(0) = cos θ

R
+ ρlω

2

8σlv
R2. (4.3)

The differential Eq. (4.2) allows a closed-form solution. Indeed, by rewriting (4.2) as
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(a) (b)

Fig. 8 a Bω = 2. Solid: z̄(0) = 0.7492 and z̄(R) = 1.2553. Dashed: z̄(0) = 0.9582 and z̄(R) = 1.0209. Dotted-dashed:
z̄(0) = 1.1454 and z̄(R) = 0.8124. b Bω = 10. Solid: z̄(0) = 0.2892 and z̄(R) = 1.6125. Dashed: z̄(0) = 0.7727 and
z̄(R) = 1.1137. Dotted-dashed: z̄(0) = 0.9695 and z̄(R) = 0.9138. The normalized volume V̄ = 1

d

dr

[
r z′

(1 + z′ 2)1/2

]
= 2κ(0)r − ρl

2σlv
ω2r3, (4.4)

integration gives

z′

(1 + z′ 2)1/2 = κ(0)r − ρl

8σlv
ω2r3. (4.5)

The integration constant vanishes, because z′(0) = 0. The solution of this equation is

z = z(0) +
r∫

0

t (�) d�

[1 − t2(�)]1/2 , t (�) = κ(0)� − ρl

8σlv
ω2�3. (4.6)

The elevation z(0) is obtained a posteriori, by using (4.6) to evaluate the liquid volume from V = 2π
∫ R

0 r z dr .
This gives

z(0) = 1

π R2

⎧⎨
⎩V − 2π

R∫

0

r dr

r∫

0

t (�) d�

[1 − t2(�)]1/2

⎫⎬
⎭ . (4.7)

Among all neighboring configurations, the so-determined equilibrium configuration is unique and stable, as
shown for g ≥ 0 in Sect. 2.

4.1.1 Numerical evaluations

By using the rotation-induced Bond number (2.31), the curvature κ(0) in (4.3), and t (�) in Eq. (4.6), can be
expressed as

κ(0) = 1

R

(
cos θ + 1

8
Bω

)
, t (�) =

{
cos θ + Bω

8

[
1 −

( �

R

)2
]}( �

R

)
. (4.8)

Figure 8a shows the liquid shape for three indicated values of the contact angle θ , in the case Bω = 2. Figure 8b
shows the same in the case Bω = 10. The curves intersect at one point coincidentally, because the contact
angles θ = 45◦ and θ = 135◦ are at ∓45◦ relative to the contact angle θ = 90◦.



V. A. Lubarda

(a) (b)

Fig. 9 Obtained from (4.6) with Bω = 0, or (4.9) and (4.10). a Volume V̄ = 0.4235. Solid: z̄(0) = 0.2282 and z̄(R) =
0.6424. Dashed: z̄(0) = z̄(R) = 0.4325. Dotted-dashed: z̄(0) = 0.6188 and z̄(R) = 0.2046. b Volume V̄ = 0.42351. Solid:
z̄(0) = 0.1669 and z̄(R) = 0.7443. Dashed: z̄(0) = 0.5543 and z̄(R) = 0.2864. Dotted-dashed: semi-spherical shape of radius
z̄(0) = 0.8596, if ϕ = 90◦

4.1.2 Stationary cylinder

If ω = 0, the curvature of the liquid surface is constant and equal to κ(0) = cos θ/R. The shape of the surface
is explicitly specified by (4.6), which gives

z = z(0) + R

cos θ

[
1 −

(
1 − r2

R2 cos2 θ

)1/2
]

. (4.9)

This represents a sphere of radius R/ cos θ , centered at the point with the coordinates r = 0 and z = z(0) +
R/ cos θ . The elevation z(0) is, from (4.7),

z(0) = h − R

3 cos θ

(1 − sin θ)(1 + 2 sin θ)

1 + sin θ
. (4.10)

Finn [30,31] has shown that the equilibrium liquid shape in a vertical cylindrical container, with the gravity
(however, small) directed downwards, and with constant contact angle between the liquid and the cylinder, is
unique and stable with respect to both axisymmetric and non-axisymmetric perturbations of its shape.2 This
also follows from our analysis in Sect. 2.2.

Figure 9 shows the liquid shape in a stationary cylinder for six different values of the contact angle θ , when
V̄ = 0.4325. In the case of a super-hydrophobic surface of the wall (θ = 180◦), the liquid does not touch
the wall, but forms either a semi-spherical drop of radius 0.8596R, if the wetting contact angle of the bottom
surface is ϕ = 90◦, or a spherical drop of radius 0.6823R, if the wetting contact angle of the bottom surface
is ϕ = 180◦.

4.2 Determination of the liquid shape upon dewetting

The liquid surface will touch the bottom of the cylinder if z(0) = 0 in (4.7), which yields

h = 2

R2

R∫

0

r dr

r∫

0

t (�) d�

[1 − t2(�)]1/2 . (4.11)

2 Note, however, that in the absence of gravity, the equilibrium liquid shape is unstable to at least some infinitesimal perturbation
of the boundary shape of the cylinder, for which there is no solution for the capillary surface at all; [30], page 138.
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In view of the expression for t (�) in (4.6), Eq. (4.11) specifies the angular speed ω∗ at the onset of dewetting.
The objective of this Section is to determine the shape of the liquid for ω > ω∗. In the absence of gravity,
Eq. (3.10) becomes

z′′

(1 + z′ 2)3/2 + z′

r(1 + z′ 2)1/2 = 2

R2 − R2
0

(R cos θ − R0 sin ϕ) + ρlω
2

4σlv
(R2 + R2

0 − 2r2).

By rewriting the above as

d

dr

[
r z′

(1 + z′ 2)1/2

]
= 2r

R2 − R2
0

(R cos θ − R0 sin ϕ) + ρlω
2

4σlv
[(R2 + R2

0)r − 2r3], (4.12)

the integration from R0 to R gives

z′

(1 + z′ 2)1/2 = t (r), (4.13)

where

t (r) = 1

R2 − R2
0

1

r

[
(r2 − R2

0)R cos θ + (R2 − r2)R0 sin ϕ
]+ ρlω

2

8σlv

1

r
(R2 − r2)(r2 − R2

0).

The solution of (4.13) is

z =
r∫

R0

t (�) d�

[1 − t2(�)]1/2 . (4.14)

4.2.1 Iterative numerical integration

Since the radius R0 is not known in advance, the solution of the problem proceeds iteratively. For a given
ω > ω∗, the radius R0 is assumed and the corresponding shape z = z(r) evaluated from (4.14). The volume
of the liquid is then calculated from

V = 2π

R∫

R0

r dr

r∫

R0

t (�) d�

[1 − t2(�)]1/2 . (4.15)

If the so-calculated volume is different from the actual volume of the liquid, the new value of R0 is selected,
and the procedure repeated until the calculated volume is equal to the actual liquid volume. In the case of a
stationary cylinder, the iterative procedure is still needed, except that the function t (r) is simplified by the
specification ω = 0.

Figure 10a, b shows the liquid shape for three selected values of the contact angle θ , in the case when the
dewetting contact angle at the bottom surface of the cylinder is (a) ϕ = 45◦, and (b) ϕ = 90◦. In all cases, the
volume of the liquid was V̄ = 0.1794, and the rotation-induced Bond number was Bω = 20. Figure 10c shows
the liquid shape for three selected values of dewetting contact angle ϕ, and the same contact angle θ = 45◦.
Finally, Fig. 10d shows the results when the contact angles at the bottom surface and the surface of the lateral
wall are equal to each other (ϕ = θ ). The plots demonstrate that the hydrophobicity of the surface of the lateral
wall suppresses lifting of the liquid at the circumference r = R, while the increase of dewetting contact angle
at the bottom surface of the cylinder intensifies the extent of dewetting. If the cylinder was closed at the top,
the liquid would wet the roof and, at a sufficiently high angular speed, take the shape of an annular cylinder,
except near the triple contact edges, where the surface tensions intervene to fulfill Young’s condition for the
contact angle. An analysis of a bubble zone below the ceiling of a closed cylinder, expanding toward its floor,
has been presented in [14], with further discussion and reference to other work given in [4].
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(a) (b)

(c) (d)

Fig. 10 The shape of the liquid surface corresponding to Bω = 20 and V̄ ≈ 0.1749. a The angle ϕ = 45◦. Solid: R̄0 = 0.6659
and z̄(R) = 0.5860. Dashed: R̄0 = 0.5419 and z̄(R) = 0.3643. Dotted-dashed: R̄0 = 0.4178 and z̄(R) = 0.2166. b The angle
ϕ = 90◦. Solid: R̄0 = 0.8207 and z̄(R) = 0.7102. Dashed: R̄0 = 0.6979 and z̄(R) = 0.4257. Dotted-dashed: R̄0 = 0.6053
and z̄(R) = 0.2750. c The angle θ = 45◦. Solid: R̄0 = 0.5192 and z̄(R) = 0.5441. Dashed: R̄0 = 0.6659 and z̄(R) = 0.5860.
Dotted-dashed: R̄0 = 0.7167 and z̄(R) = 0.6189. d Solid: R̄0 = 0.6593 and z̄(R) = 0.7071. Dashed: R̄0 = 0.6659 and
z̄(R) = 0.5860. Dotted-dashed: R̄0 = 0.6752 and z̄(R) = 0.5162

5 Conclusions

We presented in this paper an analysis of axisymmetric gyrostatic shape of liquid in a uniformly rotating
cylinder in the presence of surface tension. The analysis is based on the variational approach, with an effective
mechanical potential used as a functional, subjected to the constraint of liquid incompressibility. This yields
the governing Young–Laplace’s differential equation for the shape of the liquid surface, and the expressions
for the contact angle between the liquid and the lateral wall of the cylinder. The macroscopic contact angle
is shown to be independent of gravity and the angular speed of rotation and given by Young’s, or modified
Young’s, equation. For a given angular momentum, the determined axisymmetric shape of liquid surface is
unique and stable, because it corresponds to the minimum of everywhere convex potential functional in the
space of all functions defining the shape of liquid surface before the onset of dewetting. For sufficiently high
angular velocity, the liquid surface dewets the bottom of the cylinder. Two scenarios of liquid withdrawal from
the bottom are considered, with and without deposition of thin film. The corresponding potential functional
is constructed and used to derive the governing differential equation for the liquid shape, and the expressions
for the wetting angles at the lateral wall and the bottom of the cylinder. The axisymmetric gyrostatic shape of
liquid surface is determined for cylinders whose radii are comparable to the capillary length of liquid in the
gravitational or reduced gravitational field. The differential equations are solved numerically by an iterative
procedure similar to the well-known procedure used to determine the equilibrium shape of a sessile or pendant
drop in the gravitational field. The capillary effects are found to be particularly pronounced for hydrophobic
surfaces, which oppose the rotation-induced lifting of the liquid. The increase of dewetting contact angle
intensifies dewetting at the bottom surface of the cylinder. The liquid shape is then analyzed under the zero
gravity conditions. A closed-form solution is obtained in the rotation range before the onset of dewetting.
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An iterative scheme is applied to determine the liquid shape after the onset of dewetting. A variety of shapes,
corresponding to different wetting angles and speeds of rotation, are calculated and discussed. The extension
of the present study to examine the stability of axisymmetric gyrostatic shape of liquid surface, after the onset
of dewetting at the bottom of the cylinder, with respect to non-axisymmetric perturbations of its shape is a
worthwhile goal of future research.
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Appendix: Liquid shape in the absence of surface tension

If the surface tension is not included in the analysis, so that there is no interface layer between the liquid and
gas, there is no jump in pressure across the surface S, so that �p(r) = 0. The well-known parabolic shape of
the liquid surface is then [42]

z(r) = h + R2ω2

4g

(
2

r2

R2 − 1

)
. (A.1)

In particular, z(R) − h = h − z(0) = R2ω2/(4g), so that the lowering of the liquid at the center is the same
as its rising at the edge.

In order that there is no dewetting at the bottom of the cylinder, z(0) ≥ 0 (with the origin at the bottom of
the cylinder), the angular speed must be such that ω2 ≤ 4gh/R2. In order that liquid does not spill over the
side of the cylinder, z(R) ≤ H , the angular speed must satisfy the condition ω2 ≤ 4g(H − h)/R2. Thus,

ω2 ≤ 4g

R2

{
H − h, h < H ≤ 2h,

h, H ≥ 2h.
(A.2)

The contact angle is obtained from the expression z′(R) = cot θ , which gives

tan θ = 1

η
, cos θ = η

(1 + η2)1/2 , η = Rω2

g
. (A.3)

The contact angle θ decreases with the increasing ω, and it also depends on g and R, in contrast to the analysis
which includes the surface tension, where the contact angle is constant (independent of ω, R, and g), and given
by Young’s Eq. (2.17), in terms of the surface tensions alone.
If H > 2h and ω > ω1 = 2

√
gh/R, the portion of the bottom of the container will be dewetted. Implicit

assumption is that the centrifugal force is strong enough to break the bonds holding the liquid molecules
together at the bottom of the cylinder. If dewetting extends to the radius 0 ≤ R0 ≤ R, the liquid surface has
the profile

z(r) = ω2

2g
(r2 − R2

0), ω2 = ω2
1

(
1 − R2

0

R2

)−2

, (R0 ≤ r ≤ R). (A.4)

In order that liquid does not spill over the side of the cylinder, the radius of the dewetting region is bounded by

R0 ≤ R

(
1 − 2

h

H

)1/2

, H > 2h. (A.5)

The contact angles at the bottom of the cylinder and the lateral wall are

tan ϕ = η0 = R0ω
2

g
, tan θ = 1

η
= g

Rω2 . (A.6)
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