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Some fundamental issues in the formulation of constitutive theories of material response based
on the multiplicative decomposition of the deformation gradient are reviewed, with focus on
finite deformation thermoelasticity, elastoplasticity, and biomechanics. The constitutive theory
of isotropic thermoelasticity is first considered. The stress response and the entropy expression
are derived in the case of quadratic dependence of the elastic strain energy on the finite elastic
strain. Basic kinematic and kinetic aspects of the phenomenological and single crystal elasto-
plasticity within the framework of the multiplicative decomposition are presented. Attention is
given to additive decompositions of the stress and strain rates into their elastic and plastic
parts. The constitutive analysis of the stress-modulated growth of pseudo-elastic soft tissues is
then presented. The elastic and growth parts of the deformation gradient and the rate of defor-
mation tensor are defined and used to construct the corresponding rate-type biomechanic
theory. The structure of the evolution equation for growth-induced stretch ratio is discussed.
There are 112 references cited in this review article. �DOI: 10.1115/1.1591000�

1 INTRODUCTION

The objective of this survey is to give an overview of the
application of the multiplicative decomposition of the defor-
mation gradient in constitutive theories of finite deformation
thermoelasticity, elastoplasticity, and biomechanics. The
multiplicative decomposition of the deformation gradient is
based on an intermediate material configuration, which is
obtained by a conceptual destressing of the currently de-
formed material configuration to zero stress. The significance
of such configuration for material modeling was pointed out
by Eckart �1�, Kröner �2�, and Sedov �3�, but its formal in-
troduction in nonlinear continuum mechanics can be attrib-
uted to Stojanović et al �4� in the case of finite deformation
thermoelasticity, and to Lee �5� in the case of phenomeno-
logical finite deformation elastoplasticity. The decomposition
was subsequently extended and used with much success in
modeling the elastoplastic deformation of single crystals
�6–10�. More recently, following the work of Rodrigez et al
�11�, the multiplicative decomposition of the deformation
gradient was applied in biomechanics to study the stress-
modulated growth of pseudo-elastic soft tissues �12–15�. A
survey of the application of the multiplicative decomposition
in these three areas of nonlinear continuum mechanics is
presented in this review.

The formulation of the constitutive theory of finite defor-
mation thermoelasticity is first presented. The intermediate

configuration is introduced here by a conceptual isothermal
destressing of the current material configuration to zero
stress. The total deformation gradient is then decomposed
into the product of purely elastic and thermal parts. Such an
approach was first used by Stojanović et al �4,16� in the con-
stitutive study of nonpolar and polar thermoelastic materials.
However, in contrast to the decomposition of elastoplastic
deformation gradient, discussed below, the decomposition of
the thermoelastic deformation gradient received far less at-
tention in the mechanics community. Some revived interest
has recently been shown in the work by Miehe �17�, Holza-
pfel and Simo �18�, Imam and Johnson �19�, and Vujošević
and Lubarda �20�. The presentation in Section 2 follows the
latter work. The considerations are restricted to elastically
and thermally isotropic materials, with an outlined extension
to transversely isotropic and orthotropic materials. The stress
and entropy expressions are derived in the case of quadratic
dependence of the elastic strain energy on the finite elastic
strain.

Some fundamental kinematic and kinetic aspects of finite
deformation elastoplasticity theory within the framework of
the multiplicative decomposition are presented in Section 3.
The intermediate configuration is obtained from the de-
formed material configuration by elastic destressing to zero
stress. It differs from the initial configuration by the residual
or plastic deformation, and from the current configuration by
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the reversible or elastic deformation. The corresponding de-
composition of the elastoplastic deformation gradient into its
elastic and plastic part was introduced by Lee �5�. Related
early contributions also include Backman �21�, Lee and Liu
�22�, Fox �23�, Willis �24�, Mandel �25,26�, and Kröner and
Teodosiu �27�. The decomposition received a great deal of
attention in the phenomenological theory of elastoplasticity
during past three decades. Representative references include
Freund �28�, Sidoroff �29�, Kleiber �30�, Nemat-Nasser
�31,32�, Lubarda and Lee �33�, Johnson and Bammann �34�,
Simo and Ortiz �35�, Needleman �36�, Dashner �37�, Dafalias
�38,39�, Agah-Tehrani et al �40�, Van der Giessen �41�, Mo-
ran et al �42�, Naghdi �43�, Aravas �44�, Lubarda and Shih
�45�, Xiao et al �46�, and Lubarda and Benson �47�. The
multiplicative decomposition was further extended and suc-
cessfully applied to model the elastoplastic deformation of
single crystals, in which the crystallographic slip is assumed
to be the only mechanism of plastic deformation. The plastic
part of deformation gradient accounts for the crystallo-
graphic slip, while the elastic part accounts for the lattice
stretching and rotation; Asaro and Rice �6�, Hill and Havner
�7�, Asaro �8,9�, Havner �10�, Aravas and Aifantis �48�, Bas-
sani �49�, Lubarda �50�, and Gurtin �51�. The constitutive
analysis of single crystal plasticity within the framework of
multiplicative decomposition is also presented in Section 3,
with an accent given to additive decompositions of the stress
and strain rates into their elastic and plastic parts.

The third area of nonlinear continuum mechanics in
which the multiplicative decomposition of deformation gra-
dient was applied is biomechanics. The soft tissues, such as
blood vessels and tendons, can experience large deforma-
tions during their stress-modulated growth. In describing this
process, Rodrigez et al �11� decomposed the corresponding
deformation gradient into its elastic and growth parts. Such
decomposition was further utilized by Taber and Eggers �12�,
Chen and Hoger �13�, Klisch and Van Dyke �14�, Lubarda
and Hoger �15�, Taber and Perucchio �52�, and Hoger et al
�53�. In Section 4, we present an analysis of the stress-
modulated growth of isotropic pseudo-elastic soft tissues by
using this decomposition. The rate-type biomechanic theory
is constructed, based on additive decomposition of the rate of
deformation into its elastic and growth parts, and an appeal-
ing structure of the evolution equation for the growth-
induced stretch ratio. The concluding remarks on the multi-
plicative decomposition of deformation gradient and its role
in nonlinear continuum mechanics are given in Section 5.

2 THERMOELASTICITY

In the constitutive theory of thermoelastic material response
the intermediate configuration B� is introduced by isothermal
elastic destressing of the current material configuration B to
zero stress �Fig. 1�. If the isothermal elastic deformation gra-
dient from B� to B is Fe , and the thermal deformation gra-
dient from Bo to B� is F� , the total deformation gradient F
can be decomposed as

F�Fe•F� (2.1)

This decomposition was introduced in finite-strain ther-
moelasticity by Stojanović and his associates �4,16�, and fur-
ther employed by Stojanović �54�, Mićunović �55�, and Lu
and Pister �56�. For the inhomogeneous deformation and
temperature fields, only F is a true deformation gradient. The
mappings from B� to B and from Bo to B� , on the other
hand, are generally not continuous one-to-one mappings, so
that Fe and F� are defined as the point functions or the local
deformation gradients. The decomposition �2.1� is not unique
because an arbitrary rigid-body rotation can be superposed to
B� preserving it unstressed. However, the gradient F� can be
specified uniquely in each considered case, depending on the
type of material anisotropy. For example, for an orthotropic
material with the principal axes of orthotropy parallel to unit
vectors mo, no, and mo�no in the configuration Bo , the
gradient F� is specified by �57�

F��� I������mo
� mo������no

� no (2.2)

The stretch ratios due to thermal expansion in the orthogonal
directions mo and no are ���(�) and ���(�), while �
��(�) is the stretch ratio in the direction mo�no. The
second-order unit tensor is denoted by I. The modification of
the representation �2.2� for transversely isotropic materials is
straightforward.

The elastic Lagrangian strain and its rate are

Ee�F�
�T

•�E�E��•F�
�1 (2.3)

Ėe�F�
�T

•Ė•F�
�1�L�

s �Ee•L��L�
T
•Ee (2.4)

where L��Ḟ�•F�
�1 is the velocity gradient in the intermedi-

ate configuration, and L�
s �(L��L�

T)/2 stands for its sym-
metric part. The elastic and thermal strains are defined by

Ee�
1

2
�Fe

T
•Fe�I�, E��

1

2
�F�

T
•F��I� (2.5)

Fig. 1 The intermediate configuration B� at a nonuniform tem-
perature � is obtained from the deformed configuration B by iso-
thermal destressing to zero stress. The deformation gradient from
initial to deformed configuration F is decomposed into elastic part
Fe and thermal part F� , such that F�Fe•F� .
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The subsequent analysis will be restricted to isotropic mate-
rials, for which the thermal part of the deformation gradient
is

F������I (2.6)

The scalar ���(�) is the thermal stretch ratio in any ma-
terial direction. In this case, the elastic and thermal strains
become

Ee�
1

�2 �E�E��, E��
1

2
��2�1 �I (2.7)

The relationship holds

I�2E��2�I�2Ee� (2.8)

Since the thermal stretch ratio � and the coefficient of ther-
mal expansion 	 are related by

	����
1

�

d�

d�
(2.9)

the rate of elastic strain can be written as

Ėe�
1

�2���
�Ė�	����I�2E��̇� (2.10)

2.1 Stress response

Within the model of the multiplicative decomposition, the
Helmholtz free energy can be conveniently split into two
parts, such that


�
e�Ee ,���
���� (2.11)

where 
e is an isotropic function of the elastic strain Ee and
the temperature �. This decomposition is physically appeal-
ing because the function 
e(Ee ,�) can be taken as one of the
well-known strain energy functions of the isothermal finite-
strain elasticity, except that the coefficients of the strain-
dependent terms are the functions of temperature, while the
function 
�(�) can be separately adjusted in accord with
experimental data for the specific heat. Other representations
of 
 are possible, such as those used by Lu and Pister �56�,
and Imam and Johnson �19�. The time-rate of the free energy
in Eq. �2.11� is


̇�
�
e

�Ee
:Ėe�

�
e

��
�̇�

d
�

d�
�̇ (2.12)

Upon the substitution of Eq. �2.10�, there follows


̇�
1

�2

�
e

�Ee
:Ė�� 	

�2

�
e

�Ee
:�I�2E��

�
e

��
�

d
�

d� � �̇
(2.13)

The comparison with the energy equation,


̇�
1

�o
T:Ė���̇ (2.14)

establishes the constitutive relations for the symmetric
Piola–Kirchhoff stress T and the specific entropy �. These
are

T�
�o

�2

�
e

�Ee
(2.15)

��	
�
e

�Ee
:�I�2Ee��

�
e

��
�

d
�

d�
(2.16)

In view of the relationship �o��3�� , between the densities
�o in the configuration Bo and �� in the configuration B� ,
the stress response in Eq. �2.15� can also be written as

T��Te , Te���

�
e

�Ee
(2.17)

For example, suppose that 
e is a quadratic function of
the elastic strain components, such that

��
e�
1

2
���� trEe�

2�����Ee :Ee (2.18)

where ��� and ���� are the temperature-dependent Lamé
moduli. It follows that

Te��e���:Ee , �e�������I� I�2����II (2.19)

The temperature-dependent elastic moduli tensor is �e(�),
while II stands for the fourth-order unit tensor with rectan-
gular components

II i jkl�
1

2
�� ik � j l�� il� jk� (2.20)

The rectangular components of the second-order unit tensor
are the Kronecker deltas � i j . Consequently, by substituting
Eqs. �2.10� and �2.19� into T��Te , the stress response be-
comes

T�
1

����
����� tr E�I�2����E�

�
3

2 ������
1

���������I (2.21)

The temperature-dependent bulk modulus is ����. This is an
exact expression for the thermoelastic stress response in the
case of quadratic representation of 
e in terms of the finite
elastic strain Ee . If the Lamé moduli are taken to be
temperature-independent, and if the approximation �(�)
�1�	o(���o) is used (	o being the coefficient of linear
thermal expansion at ���o), Eq. �2.21� reduces to

T�o� trE�I�2�oE�3	o����o��oI (2.22)

When E and T are interpreted as the infinitesimal strain and
the Cauchy stress, this equation coincides with the well-
known Duhamel–Neumann expression of isotropic linear
thermoelasticity �eg, Carlson �58� and Nowacki �59��.

2.2 Entropy expression

In the case of quadratic strain energy representation �2.18�,
there is a relationship �o
e��3Te :Ee/2, so that

�o� �
e

�� �
Ee

�
3

2
�2

d�

d�
Te :Ee�

1

2
�3� �Te

�� �
Ee

:Ee (2.23)

Alternatively, by using Eq. �2.8�, this can be recast as
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�o� �
e

�� �
Ee

�
3

2
	�T:E�

1

2
��2�1 �tr T�

�
1

2
�3� �Te

�� �
Ee

:Ee (2.24)

The coefficient of thermal expansion 	 is defined by Eq.
�2.9�. It is readily verified that

�� �Te

�� �
Ee

�� �T

�� �
E

�	�T�3��I� (2.25)

and

�3� �Te

�� �
Ee

:Ee�� �T

�� �
E

:�E�
1

2
��2�1 � I�

�	�T:E�
1

2
�1��2�tr T� (2.26)

Inserting Eq. �2.26� into Eq. �2.24� gives

�o� �
e

�� �
Ee

�2 	 T:E�
1

2
	�2��2�tr T

�
1

2 � �T

�� �
E

:�E�
1

2
��2�1 �I� (2.27)

When this is substituted into Eq. �2.16�, the entropy becomes

��
1

2�o
�3�	� I�� �T

�� �
E
� :�E�

1

2
��2�1 �I��

d
�

d�
(2.28)

Recalling the standard expression for the latent heat l E , we
finally have

��
1

2 � 1

�
l E�

3

�o
� 	 � I� :�E�

1

2
��2�1 � I��

d
�

d�
(2.29)

This is an exact expression for the entropy � within the ap-
proximation used for the elastic strain energy function. The
second-order tensor of the latent heat l E can be calculated
from Eq. �2.25� as

l E��
1

�o
�� �T

�� �
E

��
1

�o
���� �Te

�� �
Ee

�	�T�3 � � I�� (2.30)

which gives

l E�
1

�o
�� 	 �T�3 � � I��

1

�

d�e

d�
:�E�

1

2
��2�1 �I� �

(2.31)

If the elastic moduli are independent of the temperature,
and if the stress components are much smaller than the elas-

tic bulk modulus, then the specific heat becomes l E
�3�	��I/�o , while the entropy expression �2.29� reduces
to

��
3

�o
� 	 �� tr E�

3

2
��2�1 ���

d
�

d�
(2.32)

The function 
� can be selected according to experimental
data for the specific heat cE����/�� . For example, if we
take


���
1

2 � cE
o

�o
�

9

�o
	o

2 �o� ����o�
2 (2.33)

then Eq. �2.32� becomes

��
3

�o
	o �o tr E�

cE
o

�o
����o� (2.34)

which is in agreement with the classical result from the lin-
earized theory of thermoelasticity �58�. The approximations
	�	0 and �(�)�1�	o(���o) are used in the above deri-
vation.

3 ELASTOPLASTICITY

The intermediate configuration in finite-deformation elasto-
plasticity is obtained from the current configuration by elas-
tic destressing to zero stress �Fig. 2�. It differs from the ini-
tial configuration by a residual or plastic deformation and
from the current configuration by a reversible or elastic de-
formation. The corresponding multiplicative decomposition
of elastoplastic deformation gradient into its elastic and plas-
tic part was introduced by Lee �5� as

F�Fe•Fp (3.1)

In the case when elastic destressing to zero stress is not
physically achievable due to possible onset of the reverse
plastic deformation before the state of zero stress is reached,
the intermediate configuration can be conceptually intro-
duced by a virtual destressing to zero stress, locking all in-
elastic structural changes that would occur during the actual
destressing. The deformation gradients Fe and Fp are not
uniquely defined because the intermediate configuration is
not unique; arbitrary local material rotations can be super-
posed to intermediate configuration preserving it unstressed.
This has been extensively discussed in the literature by
Green and Naghdi �60�, Lubarda and Lee �33�, Casey and
Naghdi �61�, Kleiber and Reniecki �62�, Dashner �37�, Casey
�63�, Dafalias �38�, Lubarda �64�, and others. In the applica-
tions, however, the decomposition can be made unique by
additional specifications dictated by the nature of the consid-
ered material model. For example, for elastically isotropic
materials which remain isotropic in the course of deforma-
tion the stress response from Bp to B does not depend on the
rotation Re appearing in the polar decomposition of elastic
deformation gradient Fe�Ve•Re . Consequently, the interme-
diate configuration in this case can be defined uniquely by
requiring that elastic unloading takes place without rotation.
Other choices are possible and are discussed in �64,65�.

In contrast to finite-strain thermoelasticity, considered in
the previous section, the elastoplasticity is a path-dependent
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deformation process, which is commonly analyzed by an in-
cremental procedure, following the prescribed loading or de-
formation history. This requires the use of the rate-type mea-
sures of deformation. By introducing the multiplicative
decomposition of deformation gradient �3.1�, the velocity
gradient in the current configuration L�Ḟ•F�1 becomes

L�Ḟe•Fe
�1�Fe•� Ḟp•Fp

�1�•Fe
�1 (3.2)

The rate of deformation D and the spin W are given by the
symmetric and antisymmetric part of L, so that

D�� Ḟe•Fe
�1�s��Fe•� Ḟp•Fp

�1�•Fe
�1�s (3.3)

W�� Ḟe•Fe
�1�a��Fe•� Ḟp•Fp

�1�•Fe
�1�a (3.4)

For the later purposes, the second spin tensor appearing on
the right-hand side of Eq. �3.4� is conveniently denoted by

�p��Fe•� Ḟp•Fp
�1�•Fe

�1�a (3.5)

3.1 Partition of elastoplastic rate of deformation

Large plastic deformations can affect elastic properties of the
material and change its elastic symmetry group. This, for
example, can happen due to grain �lattice� rotations in a
polycrystalline metal sample and resulting crystallographic
texture. In such cases, the damage variables �scalars, vectors,
second- or higher-order tensors� can be introduced to de-
scribe the degradation of elastic properties and their direc-
tional changes caused by plastic deformation �66–68�. On
the other hand, in the range of small or moderately large
deformations, it may be appropriate to assume that plastic
deformation does not affect elastic properties of the material.
In this case, the elastic response of an isotropic material is
independent of the rotation superposed to intermediate con-
figuration, and is given by

��Fe•
��e�Ee�

�Ee
•Fe

T (3.6)

The elastic strain energy per unit unstressed volume (�e

��o 
e) is here an isotropic function of the Lagrangian
strain Ee . The plastic deformation is assumed to be incom-
pressible (det Fe�det F), so that ��(det F)� is the Kirch-
hoff stress �the Cauchy stress � weighted by det F). By dif-
ferentiating Eq. �3.6�, we obtain

�̇�� Ḟe•Fe
�1�•���•� Ḟe•Fe

�1�T�L̄e :� Ḟe•Fe
�1�s (3.7)

The rectangular components of the fourth-order elastic
moduli tensor L̄e are

L̄i jkl
e �Fim

e F jn
e �2�e

�Emn
e �Epq

e Fkp
e Flq

e (3.8)

Equation �3.7� can be rewritten as

�̇�� Ḟe•Fe
�1�a•���•� Ḟe•Fe

�1�a�Le :� Ḟe•Fe
�1�s (3.9)

with the modified instantaneous moduli given by

L i jkl
e �L̄i jkl

e �
1

2
�� ik� j l�� jk� il�� il� jk�� j l� ik� (3.10)

The elastic deformation gradient Fe is defined relative to
intermediate configuration which evolves during elastoplas-
tic deformation. This causes two difficulties in the identifi-
cation of the elastic part of the rate of deformation �45�.
First, since Fe and Fp are specified only to within an arbitrary
rotation, the velocity gradient Ḟe•Fe

�1 and its symmetric and
antisymmetric parts are not unique. Second, the deforming
intermediate configuration also contributes to elastic rate of
deformation, which is not in general given only by (Ḟe

•Fe
�1)s . To overcome these difficulties, a kinetic definition

of elastic strain increment is adopted according to which
De dt is defined as a reversible part of the total strain incre-
ment D dt , recovered upon loading-unloading cycle of the
Jaumann stress increment �̊dt . Thus, if Le

�1 designates the
instantaneous elastic compliances tensor, the inverse of the
instantaneous elastic moduli tensor �3.10�, we require that

De�Le
�1: �̊, �̊� �̇�W•���•W (3.11)

The remaining part of the total rate of deformation,

Dp�D�De (3.12)

is the plastic part, which gives a residual strain increment left
upon the considered infinitesimal cycle of stress. If the ma-
terial obeys the Ilyushin �69� postulate of positive net work
in an isothermal cycle of strain that involves plastic defor-
mation, the so defined plastic rate of deformation is codirec-
tional with the outward normal to a locally smooth yield
surface in the Cauchy stress space. This definition of plastic
rate of deformation was introduced in the constitutive analy-
sis of elastoplastic deformation by Hill and Rice �70� and
Hill �71�.

To identify in Eq. �3.9� the elastic strain rate, in accord
with the kinetic definition �3.11�, we eliminate (Ḟe•Fe

�1)a in
terms of W and �p , to obtain

Fig. 2 The intermediate configuration Bp is obtained from the de-
formed configuration B by destressing to zero stress. The elasto-
plastic deformation gradient is decomposed into its elastic and plas-
tic part, such that F�Fe•Fp .
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�̊�Le :� Ḟe•Fe
�1�s��p•���•�p (3.13)

Consequently, the elastic rate of deformation is given by

De�� Ḟe•Fe
�1�s�Le

�1:��p•���•�p� (3.14)

The associated plastic rate of deformation is

Dp��Fe•� Ḟp•Fp
�1�•Fe

�1�s�Le
�1:��p•���•�p� (3.15)

Since Le
�1 and �̊ in Eq. �3.11� are independent of the super-

posed rotation to intermediate configuration, Eq. �3.14�
specifies De uniquely. In contrast, its constituents, (Ḟe

•Fe
�1)s and the term dependent on the spin �p , do depend on

the choice of intermediate configuration. Similar remarks ap-
ply to plastic rate of deformation Dp in its representation
�3.15�. It is Dp that is normal to the yield surface, and not the
first term on the right-hand side of Eq. �3.15�. In transform-
ing the velocity gradient Ḟp•Fp

�1 from intermediate to cur-
rent configuration by elastic deformation, the corresponding
rate of deformation �Fe•(Ḟp•Fp

�1)•Fe
�1�s is equal to plastic

rate of deformation Dp , with an elastic contribution due to
stress rate �p•���•�p subtracted off; Hill and Havner �7�.

If elastic components of strain are infinitesimally small,
then the instantaneous elastic compliances tensor is obtained
by an explicit inversion of the elastic moduli tensor as

Le
�1�

1

2� � II�


2��3
I� I��

1

2�
J�

1

3�
K (3.16)

where J�K�II, and

II i jkl�
1

2
�� ik � j l�� il � jk�, Ki jkl�

1

3
� i j �kl (3.17)

The right hand side of �3.14� is the correct expression for
the elastic rate of deformation, and not (Ḟe•Fe

�1)s alone.
Only if the intermediate configuration �ie, the rotation Re

during the destressing program� is chosen such that the spin
�p�0, the rate of deformation (Ḟe•Fe

�1)s is exactly equal to
De . Within the framework under discussion, this choice of
the spin represents a geometric �kinematic� specification of
the intermediate configuration. It is not a constitutive as-
sumption and has no consequences on �3.14�. We could just
as well define the intermediate configuration by requiring
that the spin (Ḟe•Fe

�1)a vanishes identically. In this case,
�p�W. The end result is still equation �3.14�, as can be
checked by inspection.

The constitutive structure for the plastic part of the rate of
deformation tensor is constructed by using the concept of the
yield surface. This gives

Dp�
1

H � � f

��
�

� f

��� : �̊ (3.18)

where H is a scalar parameter of the deformation history, and
f �0 defines the yield surface. For example, in then case of
kinematic hardening with the von Mises type yield condition

f �
1

2
������:�������K2�0 (3.19)

and the Armstrong–Frederick evolution of the back stress

�̊�2h Dp�c ��Dp:Dp�1/2 (3.20)

it follows that

Dp�
1

2h�1�m �

������ � ������

������:������
: �̊ (3.21)

where

m�
c

2 h

������:�

�������:�������1/2 (3.22)

The parameters h and c are the material parameters. Other
hardening models are discussed in the books by Khan and
Huang �72� and Simo and Hughes �73�. The formulation of
the elastoplastic constitutive theory by using the yield sur-
face in strain space is presented by Hill �71�, Casey and
Naghdi �74�, Naghdi �43�, and Lubarda �75,76�. Additional
references are available in Naghdi’s review �43�.

The partition of the total rate of deformation into its elas-
tic and plastic parts within the framework of the multiplica-
tive decomposition has been a topic of active research and
some debate for number of years. Representative references
include Kratochvil �77�, Nemat-Nasser �31,32�, Lubarda and
Lee �33�, Johnson and Bammann �34�, Simo and Ortiz �35�,
Needleman �36�, Moran et al �42�, Agah-Tehrani et al �40�,
Dafalias �38,39�, Van der Giessen �41�, Naghdi �43�, Lubarda
�64,78�, and Xiao et al �46�. For elastically anisotropic ma-
terials, the papers by Aravas �44�, Lubarda �79�, and Stein-
mann et al �80� can be consulted.

3.2 Analysis of elastic rate of deformation

The elastic rate of deformation of an elastically isotropic
material can be expressed in terms of the kinematic quanti-
ties only, as

De�� Ḟe•Fe
�1�s�� Ḟe•Fe

�1�s��Fe•�p•Fe
�1�s (3.23)

The Jaumann derivative of Fe is here defined by

Ḟe�Ḟe��p•Fe�Fe•�p (3.24)

which represents the rate of Fe observed in the coordinate
systems that rotate with the spin �p in both the current and
the intermediate configuration. The spin �p is defined as the
solution of the matrix equation

� Ḟe•Fe
�1�a��Fe•�p•Fe

�1�a�W (3.25)

The proof for the representation �3.23� proceeds by applying
the Jaumann derivative with respect to �p to both sides of
Eq. �3.6�, which gives

�̇�� Ḟe•Fe
�1�•���•� Ḟe•Fe

�1�T�Fe•� �2�e

�Ee� �Ee
:Ėe� •Fe

T

(3.26)

Since

Ḟe•Fe
�1�De�W��p (3.27)

the substitution into Eq. �3.26� yields

�̊�Le :De , De�� Ḟe•Fe
�1�s (3.28)
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The two contributions to the elastic rate of deformation De

in Eq. �3.23� depend on the choice of intermediate configu-
ration, ie, on the elastic rotation Re of destressing program,
but their sum giving De does not. If elastic destressing is
performed without rotation (Re�I), the spin �p��p

o is the
solution of

�V̇e•Ve
�1�a��Ve•�p

o
•Ve

�1�a�W (3.29)

This uniquely defines �p
o in terms of W, Ve and V̇e . The

elastic rate of deformation �3.23� is in this case

De��V̇e•Ve
�1�s��V̇e•Ve

�1�s��Ve•�p
o
•Ve

�1�s (3.30)

The first term on the far right-hand side represents the con-
tribution to De from the elastic stretching rate (V̇e•Ve

�1)s ,
while the second term depends on the spin �p

o and accounts
for the effects of deforming and rotating intermediate con-
figuration �31,44,62�.

The representation of the elastic rate of deformation in
Eq. �3.23� involves only kinematic quantities (Fe and �p),
while the representation �3.14� involves both kinematic and
kinetic quantities. Clearly,

�Fe•�p•Fe
�1�s��Le

�1:��p•���•�p� (3.31)

Note also that the elastic strain expression �3.23� can be re-
cast in the form

De�
1

2
Fe

�T
•Ċe•Fe

�1, Ċe�Ċe��p•Ce�Ce•�p (3.32)

The expressions �3.23� and �3.32� hold for elastoplastic de-
formations of elastically isotropic materials, regardless of
whether the material hardens isotropically or anisotropically
during the deformation process.

Additional analysis of the elastic rate of deformation and
the partition of the total rate of deformation into its elastic
and plastic parts can be found in cited papers. There has also
been an extensive research devoted to plastic spin and its role
in phenomenological elastoplasticity theory. The papers by
Lee et al �81�, Loret �82�, Dafalias �83,84�, Zbib and Aifantis
�85�, Van der Giessen �86�, Nemat-Nasser �87�, Lubarda and
Shih �45�, and the review by Dafalias �88� can be consulted
in this regard.

3.3 Crystal plasticity

In single crystals for which crystallographic slip is assumed
to be the only mechanism of plastic deformation, the mate-
rial flows through the lattice via dislocation motion, while
the lattice itself, with the material embedded to it, undergoes
elastic deformation and rotation. If the discrete dislocation
substructure is ignored, the plastic deformation can be con-
sidered to occur in the form of smooth shearing on the slip
planes and in the slip directions. This continuum slip model
from the pioneering work of Taylor �89� was employed and
further developed by Hill and Rice �90�, Mandel �91�, Asaro
and Rice �6�, Hill and Havner �7�, and Asaro �8,9�. The de-
formation gradient is decomposed as

F�F*•Fp (3.33)

where Fp is the part due to slip only, while F* is due to
lattice stretching and rotation �Fig. 3�. Denote the unit vector
in the slip direction by so

	 and the unit normal to the corre-
sponding slip plane in the undeformed configuration by mo

	 ,
where 	 designates the slip system. The vector so

	 is embed-
ded in the lattice, so that it becomes s	�F*•so

	 in the de-
formed configuration. The normal to the slip plane in the
deformed configuration is defined by the reciprocal vector
m	�mo

	
•F

*
�1 , ie,

s	�F*•so
	 , m	�mo

	
•F

*
�1 (3.34)

The velocity gradient in the intermediate configuration is a
consequence of the slip rates �̇	 over n active slip systems,
such that

Ḟp•Fp
�1� �

	�1

n

�̇	 so
	

� mo
	 (3.35)

Using �3.34�, the corresponding tensor in the deformed con-
figuration is

F*•� Ḟp•Fp
�1�•F

*
�1� �

	�1

n

�P	�Q	��̇	 (3.36)

where the second-order tensors P	 and Q	 are defined by

P	��s	
� m	�s , Q	��s	

� m	�a (3.37)

By decomposing the lattice velocity gradient L* into its
symmetric and anti-symmetric part, the lattice rate of defor-
mation D* and the lattice spin W* , there follows

D�D*� �
	�1

n

P	 �̇	, W�W*� �
	�1

n

Q	 �̇	 (3.38)

Fig. 3 Kinematic model of elastoplastic deformation of a single
crystal. The material flows through the crystalline lattice by crys-
tallographic slip, which gives rise to deformation gradient Fp . Sub-
sequently, the material with embedded lattice deforms elastically
from the intermediate to current configuration. The corresponding
deformation gradient is F* .
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Since crystallographic slip is an isochoric deformation
process, the elastic strain energy per unit initial volume can
be written as �e��e(E*). The scalar function �e depends
on the strain components expressed in the coordinate system
with fixed orientation relative to the lattice orientation in Bo

and Bp . This is noted because for anisotropic crystals �e is
not an isotropic scalar function of E* , and its representation
depends on the selected coordinate system. It is also assumed
that elastic properties of the crystal are not affected by the
crystallographic slip. The symmetric Piola–Kirchhoff stress
with respect to lattice deformation is then

T*�
��e

�E*
(3.39)

The stress tensor T* is related to the Kirchhoff stress � by

T*�F
*
�1

•�•F
*
�T (3.40)

The plastic incompressibility is assumed, so that det F*
�det F. The rate of the Piola–Kirchhoff stress Ṫ* can be
expressed in terms of the convected rate of the Kirchhoff
stress �

�

as �92�

Ṫ*�F
*
�1

•�
�

•F
*
�T, �

�

� �̇�L*•���•L
*
T (3.41)

It can be readily verified that

�
�

��
�

��L�L*�•���•�L�L*�T (3.42)

where �
�

is the convected rate of the Kirchhoff stress with
respect to total velocity gradient L. Similarly,

�̇� �̊ � �
	�1

n

�Q	
•���•Q	��̇	 (3.43)

where �̇ and �̊ are the Jaumann rates of the Kirchhoff stress

with respect to the lattice and total spin (W* and W�,
respectively.

On the other hand, taking the time derivative in Eq.
�3.39�, there follows

Ṫ*��̄* :Ė* , �̄*�
�2�e

�E* � �E*
(3.44)

Substituting the first of �3.41� into Eq. �3.44�, we deduce

�
�

�L̄* :D* , L̄*�F* F* �̄* F
*
T F

*
T (3.45)

If the Jaumann rate corotational with the lattice spin is used,
Eq. �3.45� can be recast in the form

�̇�L* :D* (3.46)

The relationship between the corresponding elastic moduli
tensors is specified by an equation such as �3.10�. Along
elastic branch of the response �elastic unloading from an
elastoplastic state�, the total and the lattice velocity gradients
coincide, so that L*�L and �̇� �̊.

The rate-type constitutive framework for the elastoplastic
loading of a single crystal is obtained by substituting Eq.
�3.43� into Eq. �3.46�. The result is

�̊�L* :D� �
	�1

n

C	 �̇	 (3.47)

where

C	�L* :P	��Q	
•���•Q	� (3.48)

The elastic part of the stress rate �̊ is

� �̊�e�L* :D (3.49)

since only the remaining part of the stress rate depends on
the slip rates �̇	. This is the plastic part

( �̊)p�� �
	�1

n

C	 �̇	 (3.50)

For the rate-independent elastoplastic crystal, it is com-
monly assumed that plastic flow occurs on a slip system
when the resolved shear stress �	�P	:��s•�•m on that
system reaches the critical value (�	��cr

	 ). The rate of
change of the critical value of the resolved shear stress on a
given slip system is specified by the hardening law

�̇cr
	 � �

��1

n0

h	� �̇�, 	�1,2, . . . ,N (3.51)

The total number of all available slip systems is N , while n0

is the number of critical �potentially active� slip systems, for
which �	��cr

	 . The coefficients h	� are the slip-plane hard-
ening rates �moduli�. The moduli corresponding to 	��
represent the self-hardening on a given slip system, while
	�� moduli represent the latent hardening. Different latent
hardening theories, with the reference to original work, are
examined in the book by Havner �10�. It can be shown that

�̇	� �
��1

n

g	�
�1C�:D (3.52)

where n�n0 is the number of active slip systems, and

g	��h	��C	:P� (3.53)

In Eq. �3.52�, it is assumed that the inverse matrix, whose
components are designated by g	�

�1 , exists. The substitution
into Eq. �3.50�, in conjunction with Eq. �3.49�, yields the
final constitutive structure for elastoplastic deformation of a
single crystal

�̊ �� L*� �
	�1

n

�
��1

n

g	�
�1 C	

� C�� :D (3.54)

4 BIOMECHANICS

The analysis of the stress-modulated growth of living tissues
and other biomaterials has been an important research topic
in biomechanics during past several decades. Early work in-
cludes a study of the relationship between mechanical loads
and uniform growth by Hsu �93�, and a study of the mass
deposition and resorption processes in hard tissues by Cowin
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and Hegedus �94�. The latter work provided the governing
equations of the so-called adaptive elasticity theory, in which
an elastic material adopts its structure to applied loading.
Fundamental contribution was further made by Skalak et al
�95� in the analytical description of the volumetrically dis-
tributed mass growth, and the mass growth by deposition or
resorption on the surface. The origin and the role of the
residual stresses in biological tissues have been examined
both analytically and experimentally by many researchers.
The review papers by Taber �96� and Humphrey �97� contain
an extensive list of pertinent references. In contrast to hard
tissues �bones�, which undergo only small deformations, soft
tissues such as blood vessels and tendons can experience
large deformations. An important step toward the general
analysis of finite volumetric growth of pseudo-elastic soft
tissues was made by Rodrigez et al �11�, who decomposed
the total deformation gradient into its elastic and growth part.
The subsequent work includes the contributions by Taber and
Eggers �12�, Taber and Perucchio �52�, Chen and Hoger �13�,
Klisch and Van Dyke �14�, and Lubarda and Hoger �15�.

We assume that material points are everywhere dense dur-
ing the volumetric mass growth, so that in any small neigh-
borhood around the particle there are always points that ex-
isted before the growth. This assumption enables us to treat
the problems of volumetric mass growth by using the usual
continuum mechanics concepts, such as deformation gradient
and strain tensors. The deformation gradient in the biome-
chanic theory of volumetric mass growth is due to both, the
mass growth and the deformation caused by externally ap-
plied and the growth-induced stresses. The intermediate con-
figuration Bg is defined by an instantaneous elastic destress-
ing of the current material configuration B to zero stress �Fig.
4�, such that

F�Fe•Fg (4.1)

This decomposition is formally analogous to the previously
considered thermoelastic and elastoplastic decompositions.
The modification of the decomposition to account for the
residually stressed reference configuration was suggested by
Hoger et al �53�.

If the mass of an infinitesimal volume element in the ini-
tial configuration is dmo��o dVo, then the mass of the cor-
responding element in configurations Bg and B is

dm��g dVg�� dV (4.2)

Since

dm�dmo��
0

t

rg
o d� dVo (4.3)

where rg
0 is the time rate of the mass growth per unit initial

volume, and having regard to

dVg�Jg dVo, Jg�det Fg (4.4)

it follows that

�g Jg��o��
0

t

rg
o d� (4.5)

In addition, we have �g Jg��J and �g�� Je , because dV
�Je dVg and J�JeJg . The Jacobian of the elastic deforma-
tion is Je�det Fe .

Consider an isothermal deformation and growth process.
Denote the set of structural tensors that describe the state of
elastic anisotropy in both initial and intermediate configura-
tion by So. For simplicity, it will be assumed that the state of
elastic anisotropy remains unaltered during the growth and
deformation processes. The elastic strain energy per unit cur-
rent mass is then an isotropic function of the elastic strain Ee

and the tensors So, so that 
e�
e(Ee ,So,�g
o) and

��Fe•
���g

o
e�

�Ee
•Fe

T�2Fe•
���g

o
e�

�Ce
•Fe

T (4.6)

For example, suppose that the material in the initial configu-
ration B 0 is characterized by an orthogonal network of fibers
as orthotropic. Let the unit vectors m0, n0, and m0�n0

specify the principal axes of orthotropy in both the initial and
the intermediate configuration. The intermediate configura-
tion has the same fiber orientation relative to the fixed frame
of reference as does the initial configuration. The orthotropic
symmetry will remain preserved during the mass growth if
the fibers are embedded in the material, and if Fg is defined
such that m0 and n0 are its eigendirections, ie,

Fg•m0��g m0, Fg•n0��g n0

Fg•�m0�n0���g�m0�n0� (4.7)

The stretch ratios �g and �g are the stretch ratios in the
directions m0 and n0, while �g is the stretch ratio in the
direction m0�n0. The infinitesimal fiber segments in the
configuration B are obtained from those in the intermediate
configuration by elastic embedding. For example, m�Fe

Fig. 4 Schematic representation of the multiplicative decomposi-
tion of deformation gradient into its elastic and growth parts. The
mass of an infinitesimal volume element in the initial configuration
B o is dmo. The corresponding mass in the configurations Bg and B
is dm .
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•m0 and n�Fe•n0. The elastic strain energy per unit initial
volume is in this case an isotropic function of the elastic
strain tensor Ee , and the structural tensors m0

� m0 and n0

� n0.

4.1 Partition of the rate of deformation

The stress-modulated growth of pseudo-elastic soft tissues is
a path-dependent process, since the whole stress history dur-
ing the growth process may affect the current state of the
grown tissue. Thus, similarly to path-dependent elastoplastic-
ity, we proceed with the introduction of the rate-type kine-
matic quantities. In view of the decomposition �4.1�, the ve-
locity gradient in the current configuration can be expressed
as

L�Ḟe•Fe
�1�Fe•� Ḟg•Fg

�1�•Fe
�1 (4.8)

The symmetric and antisymmetric part of the second term on
the right-hand side will be denoted by

dg��Fe•� Ḟg•Fg
�1�•Fe

�1�s , �g��Fe•� Ḟg•Fg
�1�•Fe

�1�a
(4.9)

The total rate of deformation tensor can be additively decom-
posed into its elastic and plastic part, such that

D�De�Dg (4.10)

The elastic part of the rate of deformation tensor will be
defined by the kinetic relation

De�Le
�1: �̊, �̊� �̇�W•���•W (4.11)

where �̊ is the Jaumann rate of the Kirchhoff stress, and Le

is the instantaneous elastic moduli tensor of a considered
tissue. The remaining part of the total rate of deformation
(Dg�D�De) will be referred to as the growth part of the
rate of deformation. To derive an expression for Dg , we dif-
ferentiate Eq. �4.6� to obtain

�̇�� Ḟe•Fe
�1�•���•� Ḟe•Fe

�1�T�Fe•��e :Ėe�•Fe
T

�
��

��g
o rg

o (4.12)

where

�e�
�2��g

o
e�

�Ee� �Ee
�4

�2��g
o
e�

�Ce� �Ce
(4.13)

and

��

��g
o �Fe•

�2��g
o
e�

�Ee ��g
o •Fe

T�2 Fe•
�2��g

o
e�

�Ce ��g
o •Fe

T (4.14)

The structural tensors So remain unchanged during the dif-
ferentiation. Equivalently, Eq. �4.12� can be written as

�̊�Le :� Ḟe•Fe
�1�s��g•���•�g�

��

��g
o rg

o (4.15)

The rectangular components of the elastic moduli tensor Le

are defined by Eq. �3.10�. Since

� Ḟe•Fe
�1�s�D�dg (4.16)

Eq. �4.15� gives

De�D�dg�Le
�1:� �g•���•�g�

��

��g
o rg

o� (4.17)

According to Eq. �4.11�, this is the elastic part of the rate of
deformation tensor. The growth part of the rate of deforma-
tion is accordingly

Dg�dg�Le
�1:� �g•���•�g�

��

��g
o rg

o� (4.18)

4.2 Isotropic mass growth

For isotropic materials, which remain isotropic during the
mass growth and deformation, the elastic strain energy is an
isotropic function of elastic deformation tensor Ce�Fe

T
•Fe ,

ie,


e�
e�Ce ,�g
o��
e�IC ,IIC ,IIIC ,�g

o� (4.19)

The principal invariants of Ce are

IC�trCe , IIC�
1

2
� tr�Ce

2��� tr Ce�
2� , IIIC�det Ce

(4.20)

The corresponding Kirchhoff stress follows from Eq. �4.6�,

��2�c2 I�c0 Be�c1 Be
2� (4.21)

The left Cauchy–Green deformation tensor due to elastic
deformation is Be�Fe•Fe

T . The scalar coefficients appearing
in Eq. �4.21� are

c0�
���g

o
e�

�IC
�IC

���g
o
e�

�IIC

c1�
���g

o
e�

�IIC
, c2�IIIC

���g
o
e�

�IIIC
(4.22)

If the mass growth takes place isotropically, the growth
part of deformation gradient is

Fg��g I (4.23)

The isotropic stretch ratio due to volumetric mass growth is
denoted by �g . This is the ratio of the corresponding infini-
tesimal material lengths in the configurations B o and Bg . It
readily follows that the velocity gradient in the intermediate
configuration is

Ḟg•Fg
�1�

�̇g

�g
I (4.24)

The velocity gradient in the current configuration is conse-
quently

L�Ḟe•Fe
�1�

�̇g

�g
I (4.25)

Since the spin tensor �g�0 in the case of isotropic mass
growth, the growth part of the rate of deformation tensor
becomes
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Dg�
�̇g

�g
I�Le

�1:� ��

��g
o rg

o� (4.26)

which follows from Eq. �4.18�. The explicit representation
for the rectangular components of the elastic moduli tensor
Le can be found in Lubarda and Hoger �15�. In contrast to
phenomenological elastoplasticity, where appropriate plastic-
ity postulates can be used to guide the construction of the
constitutive expression for the plastic rate of deformation,
the growth part of deformation tensor in the considered
model of tissue growth is deduced from the representation of
the growth part of deformation gradient, and the evolution
equation for the corresponding growth stretch ratio.

Various forms of the strain energy function were proposed
in the literature for different biological materials. The articles
by Holzapfel et al �98� and Sacks �99� contain a number of
pertinent references. Following Fung’s �100,101� proposal
for vascular soft tissues, modeled as incompressible elastic
materials, the elastic strain energy per unit initial volume can
be taken as

�g
o 
e�

1

2
	0�exp�Q ��Q�1��

1

2
q�

1

2
p�IIIC�1 �

(4.27)

Here, Q and q are the polynomials in the invariants of Ce ,
which include terms up to the fourth order in elastic stretch
ratios, ie,

Q�	1 �IC�3 ��	2 �IIC�3 ��	3�IC�3 �2 (4.28)

q��1�IC�3 ���2�IIC�3 ���3�IC�3 �2 (4.29)

The incompressibility constraint is IIIC�1�0, and the pres-
sure p plays the role of the Lagrangian multiplier. The 	’s
and �’s are the material parameters. In order that the inter-
mediate configuration is unstressed, it is required that �1

�2�2�Jp . The effects of supra-physiologic temperatures
on the mechanical response of tissues is discussed by Hum-
phrey �102�.

4.3 Evolution equation for stretch ratio

The constitutive formulation is completed by specifying an
appropriate evolution equation for the stretch ratio �g . In the
particular, but for the tissue mechanics important special
case, when the growth takes place in a density preserving
manner (�g��o), we have from Eq. �4.24�

tr� Ḟg•Fg
�1��3

�̇g

�g
�

rg

�
(4.30)

Thus, recalling that rg /��rg
o/�g

o , the rate of mass growth
rg

o�d�g
o/dt can be expressed in terms of the rate of stretch

ratio as

rg
o�3 �g

o �̇g

�g
(4.31)

Upon integration of Eq. �4.31�, taking into account the initial
conditions �g

o�1 and �g
o��o, there follows

�g
o��o�g

3 (4.32)

Lubarda and Hoger �15� studied the structure of the evo-
lution equations for the stretch ratios in different types of
anisotropic biomaterials. For an isotropic tissue, they pro-
posed the following expression

�̇g� f ���g ,tr Te� (4.33)

The tensor Te is the symmetric Piola–Kirchhoff stress with
respect to intermediate configuration Bg . Equation �4.33� in
effect specifies the volume increase by mass growth, since

d

dt � dVg

dVo���det Fg�tr� Ḟg•Fg
�1��3 �g

2 �̇g (4.34)

For isotropic mass growth, only the spherical part of the
stress tensor Te is assumed to affect the change of the stretch
ratio. The spherical part of Te can be expressed in terms of
the Cauchy stress � and the elastic deformation as

trTe�Je Be
�1:� (4.35)

The simplest evolution of the stretch ratio incorporates a
linear dependence on stress, such that

�̇g�k���g�tr Te (4.36)

This implies that the growth-equilibrium stress is equal to
zero (�̇g�0 when trTe�0). The coefficient k� may be con-
stant, or dependent on �g . For example, k� may take one
value during the development of the tissue, and another
value during the normal maturity. Yet another value may be
characteristic for abnormal conditions, such as occur in
thickening of blood vessels under hypertension. To prevent
an unlimited growth at non-zero stress, the following expres-
sion for the function k� in Eq. �4.36� is suggested

k���g��k�0
� � �g

���g

�g
��1 � m�

�

, tr Te�0 (4.37)

where �g
��1 is the limiting value of the stretch ratio that

can be reached by mass growth, and k�0
� and m�

� are the
appropriate constants �material parameters�. If the mass
growth is homogeneous throughout the body, �g

� is constant,
but for a non-uniform mass growth caused by non-uniform
biochemical properties, �g

� may be different at different
points �for example, inner and outer layers of an aorta may
have different growth potentials, in addition to stress-
modulated growth effects�. It is assumed that the stress-
modulated growth occurs under tension, while resorption
takes place under compression. In the latter case

k���g��k�0
� � �g��g

�

1��g
� � m�

�

, trTe�0 (4.38)

where �g
��1 is the limiting value of the stretch ratio that

can be reached by mass resorption. For generality, the re-
sorption parameters k�0

� and m�
� are taken to be different

than those in growth.
Other evolution equations were also suggested in the lit-

erature, motivated by the possibilities of growth and resorp-
tion. The most well-known is the evolution equation for mass
growth in terms of a nonlinear function of stress, which in-
cludes three growth-equilibrium states of stress �103�. The
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material parameters in these expressions are specified in ac-
cordance with experimental data for a particular tissue. Ap-
pealing tests include those with a transmural radial cut
through the blood vessel, which relieves the residual stresses
due to differential growth of its inner and outer layers. The
opening angle provides a convenient measure of the circum-
ferential residual strain, as discussed by Liu and Fung
�104,105�, Humphrey �97�, Taber and Eggers �12�, and
others.

5 CONCLUSIONS

Some fundamental issues in the formulation of constitutive
theories of material response based on the multiplicative de-
composition of the deformation gradient are reviewed in this
paper. Large deformations of thermoelastic and elastoplastic
materials are considered, as well as large growth-induced
deformations of pseudo-elastic soft tissues. The use of the
multiplicative decomposition of the deformation gradient in
thermoelasticity and phenomenological polycrystalline plas-
ticity can be regarded to large extent as optional, since these
constitutive formulations can also proceed without the intro-
duction of the decomposition �eg, Truesdell and Noll �106�
for thermoelasticity and Hill �71� for elastoplasticity�. Some
of the results derived on the basis of thermoelastic decom-
position, however, appear to be more suitable for the incor-
poration of experimental data for the temperature dependent
elastic moduli, thermal expansion, and specific heats �Sec-
tion 2�. The kinematic and kinetic aspects of the partition of
the stress and strain rates in phenomenological elastoplastic-
ity are richer or more illuminating when addressed in the
framework of the multiplicative decomposition, which was
discussed in Section 3. This is particularly the case when
large elastic deformations accompany plastic deformations,
as occurs under high pressure dynamic loading. Furthermore,
there is an important application of the multiplicative
decomposition of the deformation gradient in damage-
elastoplasticity �66,67,107�, where plastic deformation sig-
nificantly affects the initial elastic properties of the material.
The multiplicative decomposition was also successfully em-
ployed in the constitutive analysis of various polymeric ma-
terials �108–112�. In monocrystalline plasticity, the multipli-
cative decomposition of the deformation gradient is regarded
and commonly adopted as the most suitable framework to
cast the constitutive analysis of large slip-induced elastoplas-
tic deformation of single crystals �8–10�. The application of
the multiplicative decomposition to the study of the stress-
modulated growth of pseudo-elastic soft tissues, such as
blood vessels and tendons, is more recent and least explored.
This was reviewed in Section 4. The extent of the utility of
the decomposition for such problems and its possible advan-
tages, in spite of some early promising results by Klisch and
Van Dyke �14� and Lubarda and Hoger �15�, remain to be
seen.
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Band VIa/2, S Flügge �ed�, Springer-Verlag, Berlin, 297–346.

�59� Nowacki W �1986�, Thermoelasticity �2nd ed�, Pergamon Press, Ox-
ford; PWN—Polish Sci Publ, Warszawa.

�60� Green AE and Naghdi PM �1971�, Some remarks on elastic-plastic
deformation at finite strain, Int. J. Eng. Sci. 9, 1219–1229.

�61� Casey J and Naghdi PM �1980�, Remarks on the use of the decom-
position F�FeFp in plasticity, ASME J. Appl. Mech. 47, 672–675.

�62� Kleiber M and Raniecki B �1985�, Elastic-plastic materials at finite
strains, Plasticity Today, A Sawczuk and G Bianchi �eds�, Elsevier
Applied Science, UK, 3–46.

�63� Casey J �1987�, Discussion of ‘‘Invariance considerations in large
strain elasto-plasticity,’’ ASME J. Appl. Mech. 54, 247–248.

�64� Lubarda VA �1991�, Constitutive analysis of large elasto-plastic de-
formation based on the multiplicative decomposition of deformation
gradient, Int. J. Solids Struct. 27, 885–895.

�65� Lubarda VA �2002�, Elastoplasticity Theory, CRC Press, Boca Raton
FL.

�66� Simo JC and Ju JW �1987�, Strain- and stress-based continuum dam-
age models, I: Formulation, Int. J. Solids Struct. 23, 821–840.

�67� Lubarda VA �1994�, An analysis of large-strain damage elastoplastic-
ity, Int. J. Solids Struct. 31, 2951–2964.

�68� Lubarda VA and Krajcinovic D �1995�, Some fundamental issues in
rate theory of damage-elastoplasticity, Int. J. Plast. 11, 763–797.

�69� Ilyushin AA �1961�, On the postulate of plasticity, Prikl. Mat. Mekh.
25, 503–507.

�70� Hill R and Rice JR �1973�, Elastic potentials and the structure of
inelastic constitutive laws, SIAM J. Appl. Math. 25, 448–461.

�71� Hill R �1978�, Aspects of invariance in solid mechanics, Adv. Appl.
Mech. 18, 1–75.

�72� Khan AS and Huang S �1995�, Continuum Theory of Plasticity, John
Wiley and Sons, New York.

�73� Simo JC and Hughes TJR �1998�, Computational Plasticity, Springer-
Verlag, New York.

�74� Casey J and Naghdi PM �1983�, On the nonequivalence of the stress
and strain space formulations of plasticity theory, ASME J. Appl.
Mech. 50, 350–354.

�75� Lubarda VA �1994�, Elastoplastic constitutive analysis with the yield
surface in strain space, J. Mech. Phys. Solids 42, 931–952.

�76� Lubarda VA �2001�, Continuum Mechanics of Materials, Encyclope-
dia of Materials: Science and Technology, Elsevier, Amsterdam,
5295–5307.

�77� Kratochvil H �1973�, On a finite strain theory of elastic-inelastic ma-
terials, Acta Mech. 16, 127–142.

�78� Lubarda VA �1999�, Duality in constitutive formulation of finite-strain
elastoplasticity based on F�FeFp and F�FpFe decompositions, Int.
J. Plast. 15, 1277–1290.

�79� Lubarda VA �1991�, Some aspects of elasto-plastic constitutive analy-
sis of elastically anisotropic materials, Int. J. Plast. 7, 625–636.

�80� Steinmann P, Miehe C, and Stein E �1996�, Fast transient dynamic
plane stress analysis of orthotropic Hill-type solids at finite elasto-
plastic strain, Int. J. Solids Struct. 33, 1543–1562.

�81� Lee EH, Mallett RL, and Wertheimer TB �1983�, Stress analysis for
anisotropic hardening in finite-deformation plasticity, ASME J. Appl.
Mech. 50, 554–560.

�82� Loret B �1983�, On the effects of plastic rotation in the finite defor-
mation of anisotropic elastoplastic materials, Mech. Mater. 2, 287–
304.

�83� Dafalias YF �1983�, Corotational rates for kinematic hardening at
large plastic deformations, ASME J. Appl. Mech. 50, 561–565.

�84� Dafalias YF �1985�, The plastic spin, ASME J. Appl. Mech. 52, 865–
871.

�85� Zbib HM and Aifantis EC �1988�, On the concept of relative and
plastic spins and its implications to large deformation theories, Part II:
Anisotropic hardening, Acta Mech. 75, 35–56.

�86� Van der Giessen E �1991�, Micromechanical and thermodynamic as-
pects of the plastic spin, Int. J. Plast. 7, 365–386.

�87� Nemat-Nasser S �1992�, Phenomenological theories of elastoplastic-
ity and strain localization at high strain rates, Appl. Mech. Rev. 45,
S19–S45.

�88� Dafalias YF �1998�, Plastic spin: Necessity or redundancy, Int. J.
Plast. 14, 909–931.

�89� Taylor GI �1938�, Plastic strain in metals, J. Inst. Met. 62, 307–324.
�90� Hill R and Rice JR �1972�, Constitutive analysis of elastic-plastic

crystals at arbitrary strain, J. Mech. Phys. Solids 20, 401–413.
�91� Mandel J �1974�, Thermodynamics and plasticity, Foundations of

Continuum Thermodynamics, JJD Domingos, MNR Nina and JH
Whitelaw �eds�, McMillan Publishers, London, 283–311.

�92� Lubarda VA �1999�, On the partition of the rate of deformation in
crystal plasticity, Int. J. Plast. 15, 721–736.

�93� Hsu F �1968�, The influences of mechanical loads on the form of a
growing elastic body, Biomechanics 1, 303–311.

�94� Cowin SC and Hegedus DH �1976�, Bone remodeling I: Theory of
adaptive elasticity, J. Elast. 6, 313–326.

�95� Skalak R, Dasgupta G, Moss M, Otten E, Dullemeijer P, and Vilmann
H �1982�, Analytical description of growth, J. Theor. Biol. 94, 555–
577.

�96� Taber LA �1995�, Biomechanics of growth, remodeling, and morpho-
genesis, Appl. Mech. Rev. 48�8�, 487–545.

�97� Humphrey JD �1995�, Mechanics of the arterial wall: Review and
directions, Crit. Rev. Biomed. Eng. 23, 1–162.

�98� Holzapfel GA, Gasser TC, and Ogden RW �2000�, A new constitutive
framework for arterial wall mechanics and a comparative study of
material models, J. Elast. 61, 1–48.

�99� Sacks MS �2000�, Biaxial mechanical evaluation of planar biological
materials, J. Elast. 61, 199–246.

�100� Fung Y-C �1973�, Biorheology of soft tissues, Biorheology 9, 139–
155.

�101� Fung Y-C �1995�, Stress, strain, growth, and remodeling of living
organisms, Z. Angew. Math. Phys. 46, S469–S482.

�102� Humphrey JD �2003�, Continuum thermomechanics and the clinical
treatment of disease and injury, Appl. Mech. Rev. 56, 231–260.

�103� Fung Y-C �1990�, Biomechanics: Motion, Flow, Stress, and Growth,
Springer, New York.

Appl Mech Rev vol 57, no 2, March 2004 Lubarda: Constitutive theories based on the multiplicative decomposition 107



�104� Liu SQ and Fung Y-C �1988�, Zero-stress states of arteries, ASME J.
Biomech. Eng. 110, 82–84.

�105� Liu SQ and Fung Y-C �1989�, Relationship between hypertension,
hypertrophy, and opening angle of zero-stress state of arteries follow-
ing aortic constriction, ASME J. Biomech. Eng. 111, 325–335.

�106� Truesdell C and Noll N �1965�, The nonlinear field theories of me-
chanics, Handbuch der Physik, Band III/3, S Flügge �ed�, Springer-
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